Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30518651

ABSTRACT

Hemagglutinin (HA) stalk-reactive antibodies are the basis of several current "one-shot" universal influenza vaccine efforts because they protect against a wide spectrum of influenza virus strains. The appreciated mechanism of protection by HA stalk-reactive antibodies is to inhibit HA stalk reconfiguration, blocking viral fusion and entry. This study shows that HA stalk-reactive antibodies also inhibit neuraminidase (NA) enzymatic activity, prohibiting viral egress. NA inhibition (NI) was evident for an attached substrate but not for unattached small-molecule cleavage of sialic acid. This finding suggests that the antibodies inhibit NA enzymatic activity through steric hindrance, thus limiting NA access to sialic acids when adjacent to HA on whole virions. Consistently, F(ab')2 fragments that occupied reduced area without loss of avidity or disrupted HA/NA interactions showed significantly reduced NI activity. Notably, HA stalk-binding antibodies lacking NI activity were unable to neutralize viral infection via microneutralization assays. This work suggests that NI activity is an important component of protection mediated by HA stalk-reactive antibodies.IMPORTANCE This study reports a new mechanism of protection mediated by influenza hemagglutinin stalk-reactive antibodies, i.e., inhibition of neuraminidase activity by steric hindrance, blocking access of neuraminidase to sialic acids when it abuts hemagglutinin on whole virions.


Subject(s)
Hemagglutinins/immunology , Neuraminidase/metabolism , Orthomyxoviridae/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinins/metabolism , Humans , Immunization, Passive , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/virology , Neuraminidase/chemistry , Neuraminidase/immunology , Neutralization Tests , Orthomyxoviridae Infections/virology , Viral Proteins/chemistry
2.
J Infect Dis ; 215(4): 518-528, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28380622

ABSTRACT

Background: The outbreak of novel avian H7N9 influenza virus infections in China in 2013 has demonstrated the continuing threat posed by zoonotic pathogens. Deciphering the immune response during natural infection will guide future vaccine development. Methods: We assessed the induction of heterosubtypic cross-reactive antibodies induced by H7N9 infection against a large panel of recombinant hemagglutinins and neuraminidases by quantitative enzyme-linked immunosorbent assay, and novel chimeric hemagglutinin constructs were used to dissect the anti-stalk or -head humoral immune response. Results: H7N9 infection induced strong antibody responses against divergent H7 hemagglutinins. Interestingly, we also found induction of antibodies against heterosubtypic hemagglutinins from both group 1 and group 2 and a boost in heterosubtypic neutralizing activity in the absence of hemagglutination inhibitory activity. Kinetic monitoring revealed that heterosubtypic binding/neutralizing antibody responses typically appeared and peaked earlier than intrasubtypic responses, likely mediated by memory recall responses. Conclusions: Our results indicate that cross-group binding and neutralizing antibody responses primarily targeting the stalk region can be elicited after natural influenza virus infection. These data support our understanding of the breadth of the postinfection immune response that could inform the design of future, broadly protective influenza virus vaccines.


Subject(s)
Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibody Formation , Antibody Specificity , China/epidemiology , Cross Reactions , Disease Outbreaks , Female , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL