Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42.880
Filter
1.
Ann Med Surg (Lond) ; 86(7): 3924-3928, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989192

ABSTRACT

Background: Stem cell transplantation is a clinical approach used to treat certain types of cancers, such as hematologic malignancies. Graft-versus-host disease (GVHD) occurs in 30-70% of cases and often diminishes the quality of life of transplant patients. This study aimed to determine the prevalence of vaginal complications of GVHD following hematopoietic stem cell transplantation. Methods: This study employed an analytical cross-sectional design. All patients referred to Shariati Hospital in Tehran between 2019 and 2020 who underwent hematopoietic stem cell transplantation were considered for inclusion in this study if they met the inclusion criteria. Inclusion criteria encompassed nonnot sexually active women aged 18-70 who received stem cell transplantation more than 100 days prior. Exclusion criteria comprised patients who experienced GVHD during the first 100 days posttransplantation. Additionally, individuals over 75 and patients with metastatic cancer were excluded. Results: A total of 55 patients were recruited, with ages averaging 40±9.9 years for recipients and 38.5±12.8 years for donors. Notably, 63.3 and 58.2% of patients exhibited oral and ocular symptoms, respectively. Regarding genital involvement, 49.1% experienced vaginal symptoms, while 25.5% had vulvar involvement. Among the 27 patients with vaginal involvement, two (7.4%) were categorized as mild, 17 (63%) as moderate, and eight (29.6%) as severe. Univariate analysis identified reduced vaginal discharge [odds ratio (OR=6.56)], vaginal tightness (OR=6.23), pelvic pain (OR=5.50), and vaginal involvement (OR=3.81) as significant predictors of other organ symptoms. Moreover, vaginal involvement (OR=3.68) emerged as the sole significant predictor of the cooccurrence of oral, ocular, and other organ symptoms. In the multivariate analysis, reduced vaginal discharge (OR=8.24) and vaginal tightness (OR=3.92) significantly predicted other organ symptoms (P=0.009). Conclusion: Reduced vaginal discharge and vaginal tightness remained significant predictors of other organ symptoms.

2.
Cureus ; 16(6): e62065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989397

ABSTRACT

Various etiologies, including diabetic keratopathy (DK), dry eye disease (DED), and neurotrophic keratopathy (NK), can disrupt corneal homeostasis, exacerbating corneal epithelial defects. Topical insulin has emerged as a promising therapy for promoting corneal wound healing and addressing underlying pathologies. This review systematically evaluates the efficacy of topical insulin across different corneal disorders. A literature review was conducted across the PubMed, Google Scholar, and Scopus research databases. The search resulted in a total of 19 articles, consisting of clinical trials, retrospective studies, and case reports. In DK, topical insulin accelerates corneal wound healing post-vitreoretinal surgery with lower concentrations showing higher outcomes when compared to conventional therapy, possibly due to improved epithelial stem cell migration. In comparison, the dry-eye disease results are inconclusive regarding patient-reported outcomes and corneal staining. For NK, topical insulin accelerates corneal wound healing and restores corneal nerve sensation. Other persistent epithelial defect (PED) etiologies that have been treated with topical insulin are infection, immune-mediated, mechanical and chemical trauma, and chronic ocular surface alterations. Although individual mechanisms for the benefits of topical insulin for each of these etiologies have not been studied, the literature demonstrates that topical insulin is efficacious for PEDs regardless of etiology. Future clinical trials need to be conducted to further evaluate optimal dosing, duration, and use of topical insulin for the restoration of the corneal surface.

3.
Regen Ther ; 26: 235-250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966602

ABSTRACT

Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.

4.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968108

ABSTRACT

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Subject(s)
Angiotensin II , COVID-19 , Extracellular Vesicles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , SARS-CoV-2 , Humans , Angiotensin II/pharmacology , COVID-19/virology , COVID-19/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Extracellular Vesicles/metabolism , Induced Pluripotent Stem Cells/metabolism , Apoptosis/drug effects , Lab-On-A-Chip Devices , MicroRNAs/metabolism , MicroRNAs/genetics , Cytokines/metabolism
5.
Proc Natl Acad Sci U S A ; 121(28): e2404062121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968109

ABSTRACT

Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Differentiation , Mechanistic Target of Rapamycin Complex 1 , Trophoblasts , Trophoblasts/metabolism , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Female , Pregnancy , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Placenta/metabolism , Signal Transduction , Autophagy/physiology
6.
Oral Dis ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968169

ABSTRACT

Oral mucositis (OM) is a common and debilitating toxicity of cancer treatments - chemotherapy, radiotherapy, hematopoietic cell transplant, or combinations. OM is associated with severe oral pain and has negative impacts on patient function and quality of life. Additionally, OM has accompanying systemic complications that may have critical implications. These local and systemic consequences can alter cancer treatment, and add an economic burden. This review covers the clinical presentation and course of OM, differential diagnosis, clinical and economic impacts, pathogenesis, risk factors, assessment measures, biomarkers and prediction of OM, management, research advances in the development of new drugs and treatments, and big data.

7.
J Genet Genomics ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969260

ABSTRACT

The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants, called germ plasm, confer germline fate in the early embryo. Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development. RNA-binding proteins, acting in concert with other germ plasm components, play essential roles in the organization of the germ plasm and the specification, migration, maintenance, and differentiation of primordial germ cells. The loss of their functions impairs germ cell formation and causes sterility or sexual conversion. Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells. However, the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification. Since failure to control the developmental outcome of germ cells disrupts the formation of gametes, it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage. This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.

8.
Ann Hematol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969929

ABSTRACT

Wilms tumor 1 (WT1) gene mutations are infrequent in myelodysplastic syndrome (MDS), but MDS with WT1 mutations (WT1mut) is considered high risk for acute myeloid leukemia (AML) transformation. The influence of WT1 mutations in patients with MDS after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is unclear. We performed a retrospective analysis of 136 MDS with excess blasts 2 (MDS-EB2) patients with available WT1 status who underwent their first allo-HSCT between 2017 and 2022 in our center. There were 20 (20/136, 15%) cases in the WT1mut group and 116 (116/136, 85%) cases in the WT1 wild-type (WT1wt) group. WT1mut patients had a higher 2-year cumulative incidence of relapse (CIR) than WT1wt cases (26.2% vs. 9.4%, p = 0.037) after allo-HSCT. Multivariate analysis of relapse showed that WT1 mutations (HR, 6.0; p = 0.002), TP53 mutations (HR, 4.2; p = 0.021), and ≥ 5% blasts in bone marrow (BM) at transplantation (HR, 6.6; p = 0.004) were independent risk factors for relapse. Patients were stratified into three groups according to the risk factors. Two-year CIR differed significantly in high-, intermediate-, and low-risk groups (31.8%, 11.6%, and 0%, respectively). Hence, WT1 mutations may be related to post-transplant relapse in patients with MDS-EB2, which warrants further study.

9.
Stem Cell Res Ther ; 15(1): 191, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956608

ABSTRACT

BACKGROUND: Stem cell-derived therapies hold the potential for treatment of regenerative clinical indications. Static culture has a limited ability to scale up thus restricting its use. Suspension culturing can be used to produce target cells in large quantities, but also presents challenges related to stress and aggregation stability. METHODS: Utilizing a design of experiments (DoE) approach in vertical wheel bioreactors, we evaluated media additives that have versatile properties. The additives evaluated are Heparin sodium salt (HS), polyethylene glycol (PEG), poly (vinyl alcohol) (PVA), Pluronic F68 and dextran sulfate (DS). Multiple response variables were chosen to assess cell growth, pluripotency maintenance and aggregate stability in response to the additive inputs, and mathematical models were generated and tuned for maximal predictive power. RESULTS: Expansion of iPSCs using 100 ml vertical wheel bioreactor assay for 4 days on 19 different media combinations resulted in models that can optimize pluripotency, stability, and expansion. The expansion optimization resulted in the combination of PA, PVA and PEG with E8. This mixture resulted in an expansion doubling time that was 40% shorter than that of E8 alone. Pluripotency optimizer highlighted the importance of adding 1% PEG to the E8 medium. Aggregate stability optimization that minimizes aggregate fusion in 3D culture indicated that the interaction of both Heparin and PEG can limit aggregation as well as increase the maintenance capacity and expansion of hiPSCs, suggesting that controlling fusion is a critical parameter for expansion and maintenance. Validation of optimized solution on two cell lines in bioreactors with decreased speed of 40 RPM, showed consistency and prolonged control over aggregates that have high frequency of pluripotency markers of OCT4 and SOX2 (> 90%). A doubling time of around 1-1.4 days was maintained after passaging as clumps in the optimized medium. Controlling aggregate fusion allowed for a decrease in bioreactor speed and therefore shear stress exerted on the cells in a large-scale expansion. CONCLUSION: This study resulted in a control of aggregate size within suspension cultures, while informing about concomitant state control of the iPSC state. Wider application of this approach can address media optimization complexity and bioreactor scale-up challenges.


Subject(s)
Bioreactors , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Cell Culture Techniques/methods , Cell Proliferation , Cell Aggregation/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Cell Differentiation
10.
Virol J ; 21(1): 149, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956615

ABSTRACT

OBJECTIVES: This study aimed to characterize incidences of CMV reactivations within one year post-allo-SCT and identify risk factors for CMV second reactivation episode in population with high seropositivity where first CMV reactivation episode deemed to be high. METHODS: This retrospective cohort study analyzed data from 359 allo-SCT patients aged 14 and older admitted to a tertiary academic hospital. Data on demographic and clinical factors, CMV serostatus, conditioning regimens, graft-versus-host disease prophylaxis, engraftment time, and CMV reactivations were collected. RESULTS: First and second CMV reactivations occurred in 88.9% and 18.4% of post-allo-SCT patients respectively. Patients were stratified into two groups based on primary disease necessitating allo-SCT, patients with malignant (Group 1) and non-malignant (Group 2) hematological disease. Factors associated with the second reactivation included cord blood as a stem cell source, human leukocyte antigen mismatch, acute graft-versus-host disease, and hematological malignancies. Patients with non-malignant hematological disease displayed better outcomes, including a higher rate of spontaneous clearance of first CMV reactivation (70% versus 49.4%) and lower rates of second CMV reactivation (9.6% versus 31%) than those with malignant hematological disease. The one-year overall survival rate was 87.7% (95.5% in non-malignant hematological disease and 78.13% in malignant hematological disease). CONCLUSION: Our findings are concordant with previous local study in regard to high rate of first CMV reactivation post-allo-SCT. It appears that patients with nonmalignant hematological disease had better outcomes, such as lower second CMV reactivation and higher survival rates compared to patients with malignant hematological disease. Further investigation is needed to identify other factors affecting recurrent CMV reactivations in allo-SCT in patients with malignant hematological disease.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Transplantation, Homologous , Virus Activation , Humans , Male , Female , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/epidemiology , Middle Aged , Adult , Retrospective Studies , Young Adult , Cytomegalovirus/immunology , Adolescent , Risk Factors , Aged , Transplantation, Homologous/adverse effects , Recurrence , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Stem Cell Transplantation/adverse effects , Incidence
11.
Diabetol Metab Syndr ; 16(1): 146, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956716

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) stands as the primary cause of heart failure and mortality among patients with diabetes. Nevertheless, conventional treatment approaches are limited in their ability to effectively prevent myocardial tissue damage itself. Mesenchymal stem cell (MSC) therapy exhibits immense potential for treating DCM; however, the precise mechanisms involved in regulating inflammatory responses and pyroptosis processes, an emerging form of cellular death, within myocardial cells remain elusive. Hence, it is imperative to further elucidate the precise underlying mechanisms to facilitate the clinical implementation of MSC therapy. METHODS: In vivo, we established a DCM mouse model by administering streptozotocin and fed the mice a high-glucose and high-fat diet, followed by MSC therapy. Cardiac function and myocardial injury were evaluated through echocardiography and histological analysis. Furthermore, the levels of inflammation and pyroptosis were assessed using ELISA, Western blotting, and qRT-PCR. In vitro experiments involved inducing H9C2 myocardial cell damage with high glucose treatment, followed by coculture with MSCs to investigate their role in modulating inflammation and pyroptosis mechanisms. RESULTS: MSCs can maintain cardiac function and alleviate myocardial injury in mice with DCM. Moreover, they effectively suppress the activation of NLRP3 and reduce the release of inflammatory factors (such as IL-1ß and ROS), thereby further downregulating the expression of pyroptosis-related proteins including NLRP3, Caspase-1, and GSDMD. Additionally, we experimentally validated that MSCs exert their therapeutic effects by promoting the expression of miR-223-3p in cardiac myocytes; however, this effect can be reversed by an miR-223-3p inhibitor. CONCLUSION: MSCs effectively mitigate the release of inflammatory factors and cell lysis caused by pyroptosis through the regulation of the miR-223-3p/NLRP3 pathway, thereby safeguarding cardiomyocytes against damage in DCM. This mechanism establishes a novel theoretical foundation for the clinical treatment of cardiac conditions utilizing MSCs.

12.
Dent Res Oral Health ; 7(2): 58-65, 2024.
Article in English | MEDLINE | ID: mdl-38957610

ABSTRACT

Background: Topoisomerase IIα (TOP2A), is an enzyme involved in DNA replication, transcription, recombination, and chromatin remodeling and is found in a variety of cancers. However, the role of TOP2A regulation in oral cancer progression is not fully explained. We investigated the effect of TOP2A inhibition on cell survival, metabolism, and cancer stem cell self-renewal function in oral cancer cells. Methods: Oral carcinoma cell line SCC25 was cultured in complete DMEM/F12 media and treated with 5µM of Etoposide (Topoisomerase II inhibitor) for 48h. The critical parameters of cellular metabolism, including extracellular acidification rate (ECAR) and mitochondrial oxidative phosphorylation based on the oxygen consumption rate of cancer cells were assessed using Seahorse assay. Western blotting was performed to assess the proteins that are associated with proliferation (Survivin, IL-6) and cancer stem cell function (Oct4, Sox2) in cell lysates prepared from control and etoposide treated groups. Statistical analysis was performed using One-way ANOVA with Dunnett's multiple comparisons test. Results: The protein expression of TOP2A was significantly (P<0.05) inhibited by etoposide. Additionally, TOP2A inhibition decreased the mitochondrial respiratory parameters including basal respiration, maximal respiration and ATP production. However, TOP2A inhibition has no impact on glycolytic function. Moreover, the proliferative marker survivin and IL-6 showed a significant (P<0.05) decrease after TOP2A inhibition. Conversely, the protein expression of cancer stem cell markers Oct-4 and Sox 2 were not altered. Conclusion: These results indicate that inhibition of TOP2A is more efficacious by decreasing the mitochondrial metabolic reprogramming and thereby downregulating the key anti-apoptotic and pro-survival mediators. Thus, TOP2A represents an ideal therapeutic target and offers a potential treatment strategy for OSCC.

13.
Heliyon ; 10(11): e32502, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961967

ABSTRACT

Objective: This study aimed to investigate the incidence, treatment status, and impact position of impacted third molars (ITM) and their effects on patients undergoing hematopoietic stem cell transplantation (HSCT). Methods: A retrospective analysis was conducted on the medical records of 454 patients who underwent HSCT, out of which 188 patients had ITM. The presence of ITM and its association with transplant-related infections and complications were recorded and analyzed. Results: Patients with ITM were significantly younger. The number of mandibular ITM was notably higher than maxillary ones, and the risk of pericoronitis in mandibular ITM was significantly higher than in maxillary ones. Out of 311 ITM in 188 patients, 25 were extracted before transplantation. The proportion of extraction and treatment for ITM with pericoronitis or caries was significantly higher than that for ITM without such problems. Moreover, patients with a history of pre-transplant pericoronitis had a significantly higher probability of developing tooth-related complications during transplantation, caused by pericoronitis in ITM compared to patients without a history of pericoronitis. Conclusion: Pre-transplant examination and treatment of ITM are essential, especially in cases with a history of pericoronitis. Oral intervention can significantly reduce the occurrence of tooth-related complications related to ITM during transplantation.

14.
Front Immunol ; 15: 1383894, 2024.
Article in English | MEDLINE | ID: mdl-38962014

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has effectively complemented the treatment of advanced relapsed and refractory hematological cancers. The remarkable achievements of CD19- and BCMA-CAR T therapies have raised high expectations within the fields of hematology and oncology. These groundbreaking successes are propelling a collective aspiration to extend the reach of CAR therapies beyond B-lineage malignancies. Advanced CAR technologies have created a momentum to surmount the limitations of conventional CAR concepts. Most importantly, innovations that enable combinatorial targeting to address target antigen heterogeneity, using versatile adapter CAR concepts in conjunction with recent transformative next-generation CAR design, offer the promise to overcome both the bottleneck associated with CAR manufacturing and patient-individualized treatment regimens. In this comprehensive review, we delineate the fundamental prerequisites, navigate through pivotal challenges, and elucidate strategic approaches, all aimed at paving the way for the future establishment of multitargeted immunotherapies using universal CAR technologies.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Animals , T-Lymphocytes/immunology , Antigens, CD19/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Neoplasms/therapy , Neoplasms/immunology
15.
Front Microbiol ; 15: 1405652, 2024.
Article in English | MEDLINE | ID: mdl-38962143

ABSTRACT

Cytomegalovirus reactivation (CMVr) and bloodstream infections (BSI) are the most common infectious complications in patients after allogeneic haematopoietic stem cell transplantation (allo-HSCT). Both are associated with great high morbidity whilst the BSI is the leading cause of mortality. This retrospective study evaluated the incidence of CMVr and BSI, identified associated risk factors, assessed their impact on survival in allo-HSCT recipients during the first 100 days after transplantation. The study comprised 500 allo-HSCT recipients who were CMV DNA-negative and CMV IgG-positive before allo-HSCT. Amongst them, 400 developed CMVr and 75 experienced BSI within 100 days after allo-HSCT. Multivariate regression revealed that graft failure and acute graft-versus-host disease were significant risk factors for poor prognosis, whereas CMVr or BSI alone were not. Amongst all 500 patients, 56 (14%) developed both CMVr and BSI in the 100 days after HSCT, showing significantly reduced 6-month overall survival (p = 0.003) and long-term survival (p = 0.002). Specifically, in the initial post-transplant phase (within 60 days), BSI significantly elevate mortality risk, However, patients who survive BSI during this critical period subsequently experience a lower mortality risk. Nevertheless, the presence of CMVr in patients with BSI considerably diminishes their long-term survival prospects. This study provides real-world data on the impact of CMVr and BSI following transplantation on survival, particularly in regions such as China, where the prevalence of CMV IgG-positivity is high. The findings underscore the necessity for devising and executing focused prevention and early management strategies for CMVr and BSI to enhance outcomes for allo-HSCT recipients.

16.
Cureus ; 16(6): e61555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962597

ABSTRACT

T-cell prolymphocytic leukemia (T-PLL) presents unique treatment challenges because of its rarity and aggressiveness. Allogeneic hematopoietic stem cell transplantation offers a potentially curative option, but its safety in patients with concurrent invasive fungal infections and solid malignancies remains uncertain. We present a case of a 68-year-old male with T-PLL who developed disseminated cryptococcal disease with prostate involvement and concurrent prostate cancer (PCa). Despite the challenges, successful control of the infection and radical prostatectomy enabled the patient to proceed safely to allogeneic transplantation. The case highlights the importance of vigilance for unusual infections, such as Cryptococcus, in immunocompromised patients presenting with lower urinary tract symptoms. Clinicians should consider the possibility of PCa in this population, particularly in the context of chronic leukemia. Concurrently, the potential association between fungal prostate infections and PCa warrants further investigation.

17.
Cell Rep ; 43(7): 114406, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38963759

ABSTRACT

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.

18.
J Hazard Mater ; 476: 135092, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964040

ABSTRACT

Methylisothiazolinone (MIT) is a widely used preservative and biocide to prevent product degradation, yet its potential impact on plant growth remains poorly understood. In this study, we investigated MIT's toxic effects on Arabidopsis thaliana root growth. Exposure to MIT significantly inhibited Arabidopsis root growth, associated with reduced root meristem size and root meristem cell numbers. We explored the polar auxin transport pathway and stem cell regulation as key factors in root meristem function. Our findings demonstrated that MIT suppressed the expression of the auxin efflux carrier PIN1 and major root stem cell regulators (PLT1, PLT2, SHR, and SCR). Additionally, MIT hindered root regeneration by downregulating the quiescent center (QC) marker WOX5. Transcriptome analysis revealed MIT-induced alterations in gene expression related to oxidative stress, with physiological experiments confirming elevated reactive oxygen species (ROS) levels and increased cell death in root tips at concentrations exceeding 50 µM. In summary, this study provides critical insights into MIT's toxicity on plant root development and regeneration, primarily linked to modifications in polar auxin transport and downregulation of genes associated with root stem cell regulation.

19.
Pathol Res Pract ; 260: 155440, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964119

ABSTRACT

A cancer mass is composed of a heterogeneous group of cells, a small part of which constitutes the cancer stem cells since they are less differentiated and have a high capacity to develop cancer. Versican is an extracellular matrix protein located in many human tissues. The mRNA of versican has been shown to have "splicing patterns" as detected by RT-PCR, northern blot analysis, and cDNA sequencing. Based on this knowledge this study aims to reveal the splice variants of versican molecules, which are thought to be involved in the pathogenesis of the DU-145 human prostatic carcinoma cell line and prostatic cancer stem cells isolated from this cell line. In this study, RWPE-1 normal prostatic and DU-145 human prostate cancer cell lines have been used. Prostatic cancer stem cells and the remaining group of non-prostatic-cancer stem cells (bulk population) were isolated according to their CD133+/CD44+. RNA was isolated in all groups, and sequence analysis was accomplished for splicing variants by Illumina NextSeq 500 sequencing system. The results were analyzed by bioinformatic evaluation. As five isoforms of the versican gene in the differential transcript expression are analyzed, it was observed that a significant change was only found in the isoforms Versican 0 and Versican 1. In this study, we explored the function of this molecule which we think to be effective in cancer progression, and suggested that more valuable results can be obtained after the accomplishment of in vivo experiments.

20.
Zhonghua Xue Ye Xue Za Zhi ; 45(5): 462-467, 2024 May 14.
Article in Chinese | MEDLINE | ID: mdl-38964920

ABSTRACT

Objective: To investigate the prognostic value of enteroscopic grading for the prognostic assessment of patients with malignant hematological diseases who developed intestinal acute graft-versus-host disease (IT-aGVHD) after unrelated cord blood transplantation (UCBT) . Methods: Fifty patients with IT-aGVHD who developed hormone resistance after UCBT from June 2016 to June 2023 at Anhui Provincial Hospital were collected to compare the effective and survival rates of IT-aGVHD treatment in the group with milder enteroscopic mucosal injury (27 cases, enteroscopic grading of Ⅰ and Ⅱ) and the group with more severe injury (23 cases, enteroscopic grading of Ⅲ and Ⅳ) and to retrospectively analyze the factors affecting patients' prognosis. Results: Patients in the mild and severe groups had an effective rate of 92.6% and 47.8% at 28 days after colonoscopy (P<0.001), 81.5% and 39.1% at 56 days after colonoscopy (P=0.002), with optimal effective rate of 92.6% and 65.2% (P=0.040), respectively, and the differences were statistically significant. The multifactorial analysis found that enteroscopic grading was an independent risk factor affecting the effective rate of IT-aGVHD treatment. The overall survival rate at 2 years after colonoscopy was 70.4% (95% CI 52.0% -88.8% ) and 34.8% (95% CI 14.8% -54.8% ) for patients in the mild and severe groups, respectively, and the difference was statistically significant (P=0.003). Multifactorial analysis revealed that enteroscopic grading, cytomegalovirus infection status, second-line treatment regimen, and patients' age were independent risk factors for survival. Conclusion: The treatment efficacy and prognosis of patients in the group with less severe enteroscopic injury (grades Ⅰ and Ⅱ) were better than those in the group with more severe injury (grades Ⅲ and Ⅳ) .


Subject(s)
Colonoscopy , Cord Blood Stem Cell Transplantation , Graft vs Host Disease , Humans , Graft vs Host Disease/etiology , Graft vs Host Disease/diagnosis , Prognosis , Retrospective Studies , Hematologic Neoplasms/therapy , Female , Male , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...