Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569535

ABSTRACT

Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Breeding , Genomics
2.
Plant Dis ; 104(9): 2369-2376, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32689920

ABSTRACT

Fusarium head blight (FHB) and stem rust are among the most devastating diseases of wheat worldwide. Fhb1 is the most widely utilized and the only isolated gene for FHB resistance, while Sr2 is a durable stem rust resistance gene used in rust-prone areas. The two loci are closely linked on the short arm of chromosome 3B and the two genes are in repulsion phase among cultivars. With climate change and the shift in Fusarium populations, it is imperative to develop wheat cultivars resistant to both diseases. The present study was dedicated to developing wheat germplasm combining Fhb1 and Sr2 resistance alleles in the International Maize and Wheat Improvement Center (CIMMYT)'s elite cultivars' backgrounds. Four recombinant inbred lines (RILs) in Hartog background that have the resistant Fhb1 and Sr2 alleles in coupled phase linkage were crossed with seven CIMMYT bread wheat lines, resulting in 208 lines. Molecular markers for both genes were employed in addition to the use of pseudo-black chaff (PBC) as a phenotypic marker for the selection of Sr2. At various stages of the selection process, progeny lines were assessed for FHB index, Fusarium damaged kernels (FDK), stem rust, and PBC expression as well as other diseases of interest (stripe rust and leaf spotting diseases). The 25 best lines were selected for CIMMYT's wheat breeding program. In addition to expressing resistance to FHB, most of these 25 lines have an acceptable level of resistance to other tested diseases. These lines will be useful for wheat breeding programs worldwide and potentially speed up the resistance breeding efforts against FHB and stem rust.


Subject(s)
Disease Resistance , Triticum/genetics , Chromosomes, Plant , Genetic Markers , Humans , Plant Diseases
3.
Methods Mol Biol ; 1659: 137-149, 2017.
Article in English | MEDLINE | ID: mdl-28856647

ABSTRACT

Leaf rust, stripe rust, and stem rust pose a significant threat to global wheat production. Growing rust resistant cultivars is the most efficient and environment friendly method to reduce yield losses. Genetic analysis is undertaken to identify genes and study their roles in conferring rust resistance in a given wheat background. This chapter summarizes the protocol for genetic analysis of rust resistance at both seedling and adult plant stages. Additionally, it examines statistical analysis and related software to characterize quantitative trait loci (QTL) linked with rust resistance.


Subject(s)
Basidiomycota/physiology , Chromosome Mapping/methods , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Triticum/genetics , Triticum/microbiology , Chromosomes, Plant , Disease Resistance , Genes, Plant , Genomics/methods , Genotyping Techniques/methods , Phenotype , Seedlings/genetics , Seedlings/growth & development , Seedlings/microbiology , Software , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL