Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 10(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34451739

ABSTRACT

Late embryogenesis abundant (LEA) proteins are a large protein family that mainly function in protecting cells from abiotic stress, but these proteins are also involved in regulating plant growth and development. In this study, we performed a functional analysis of LEA13 and LEA30 from Arabidopsis thaliana. The results showed that the expression of both genes increased when plants were subjected to drought-stressed conditions. The insertional lines lea13 and lea30 were identified for each gene, and both had a T-DNA element in the regulatory region, which caused the genes to be downregulated. Moreover, lea13 and lea30 were more sensitive to drought stress due to their higher transpiration and stomatal spacing. Microarray analysis of the lea13 background showed that genes involved in hormone signaling, stomatal development, and abiotic stress responses were misregulated. Our results showed that LEA proteins are involved in drought tolerance and participate in stomatal density.

2.
Plant Biol (Stuttg) ; 22(5): 761-768, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32544284

ABSTRACT

The partial or complete loss of chlorophylls, or albinism, is a rare phenomenon in plants. In the present study, we provide the first report of the occurrence in albino Delonix regia seedlings and describe the morpho-physiological changes associated with albinism. Wild-type (WT) and albino seedlings were characterized. Leaflets samples were processed following common procedures for analysis with light, scanning and transmission electron microscopy. The chlorophyll a fluorescence parameters and the carbohydrate, lipid and soluble protein content were also determined in leaf and cotyledon samples of both albino and WT seedlings. Albino seedlings showed reduced growth. They also had lower chlorophyll and protein content in foliar tissues than WT seedlings, in addition to lower concentrations of lipids and carbohydrates stored in cotyledons. The chloroplasts of albino seedlings were poorly developed, with an undefined internal membrane system and the presence of plastoglobules. Wild-type seedlings had a uniseriate and hypoestomatic epidermis. The mesophyll was dorsiventral, consisting of a layer of palisade parenchyma and two to four layers of spongy parenchyma. In albino seedlings, the spongy parenchyma was compact, with few intercellular spaces, and the thickness of the mesophyll was larger, resulting in increased thickness of the leaf blade. Albino seedlings had higher stomatal density and number of pavement cells, although the stomata had smaller dimensions. In addition to the partial loss of chlorophylls, albino D. regia showed changes at physiological and structural levels, demonstrating the crucial nature of photosynthetic pigments during the development and differentiation of plant leaf tissues/cells.


Subject(s)
Chlorophyll , Fabaceae , Seedlings , Chlorophyll/genetics , Chlorophyll/metabolism , Chloroplasts/metabolism , Fabaceae/anatomy & histology , Fabaceae/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Seedlings/physiology
SELECTION OF CITATIONS
SEARCH DETAIL