Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
New Phytol ; 244(3): 767-768, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39252379
2.
J Plant Physiol ; 292: 154163, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118303

ABSTRACT

Stomata, small hydromechanical valves in the leaf epidermis, are fundamental in regulating gas exchange and water loss between plants and the environment. Stomatal development involves a series of coordinated events ranging from the initial cell division that determines the meristemoid mother cells to forming specialized structures such as guard cells. These events are orchestrated by the transcription factors SPEECHLESS, FAMA, and MUTE through signaling networks. The role of plant hormones (e.g., abscisic acid, jasmonic acid, and brassinosteroids) in regulating stomatal development has been elucidated through these signaling cascades. In addition, environmental factors, such as light availability and CO2 concentration, also regulate the density and distribution of stomata in leaves, ultimately affecting overall water use efficiency. In this review, we highlight the mechanisms underlying stomatal development, connecting key signaling processes that activate or inhibit cell differentiation responsible for forming guard cells in the leaf epidermis. The factors responsible for integrating transcription factors, hormonal responses, and the influence of climatic factors on the signaling network that leads to stomatal development in plants are further discussed. Understanding the intricate connections between these factors, including the metabolic regulation of plant development, may enable us to maximize plant productivity under specific environmental conditions in changing climate scenarios.


Subject(s)
Plant Leaves , Plant Stomata , Plant Stomata/physiology , Plant Leaves/metabolism , Plants/metabolism , Water/metabolism , Transcription Factors/metabolism , Epidermal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL