Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Oecologia ; 196(3): 815-824, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34110499

ABSTRACT

Land-use generates multiple stress factors, and we need to understand their effects on plant-plant interactions to predict the consequences of land-use intensification. The stress-gradient hypothesis predicts that the relative strength of positive and negative interactions changes inversely under increasing environmental stress. However, the outcome of interactions also depends on stress factor's complexity, the scale of analysis, and the role of functional traits in structuring the community. We evaluated plant-plant co-occurrences in a temperate forest, aiming to identify changes in pairwise and network metrics under increasing silvopastoral use intensity. Proportionally, positive co-occurrences were more frequent under high than low use, while negative co-occurrences were more frequent under low than high. Networks of negative co-occurrences showed higher centralization under low use, while networks of positive co-occurrences showed lower modularity and higher centralization under high use. We found a partial relationship between co-occurrences and key functional traits expected to mediate facilitation and competition processes. Our results shows that the stress-gradient hypothesis predicts changes in spatial co-occurrences even when two stress factors interact in a complex way. Networks of negative co-occurrences showed a hierarchical effect of dominant species under low use intensity. But positive co-occurrence network structure partially presented the characteristics expected if the facilitation was an important mechanism characterizing the community under high disturbance intensity. The partial relationship between functional traits and co-occurrences may indicate that other factors besides biotic interactions may be structuring the observed negative spatial associations in temperate Patagonian forests.


Subject(s)
Forests , Plants , Stress, Physiological
2.
Oecologia ; 194(4): 685-694, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33094382

ABSTRACT

Biotic and abiotic stressors commonly co-occur in plant communities and influence interactions between plants. However, their combined effects on plant interactions have not been widely studied and are still unclear. Here, we assessed the balance of interactions between neighboring plants along a grazing gradient and under two water regimes. We conducted a three-year-field experiment in semi-arid central Argentina with transplants of the dominant palatable grass Piptochaetium napostaense growing in Baccharis ulicina and open microsites across a gradient of grazing pressure. Additionally, we established a water addition treatment along that gradient. We recorded herbivory, size, and fecundity of P. napostaense. During the first two years, P. napostaense was consumed less and was larger below Baccharis than in the open. These differences were greatest under high grazing pressure. Differences in fecundity between microsites were only detected under high and medium grazing pressure in the first two years. In the third year, Baccharis lost their leaves for unclear reasons and provided poor herbivory protection; hence, P. napostaense plants in Baccharis were larger than those in the open only under medium and low grazing pressure, and there were no differences in fecundity between microsites under any grazing condition. Water additions exerted no effect on plant interactions. The balance of interactions changed from positive under heavy grazing to neutral at low and no grazing and water availability did not alter that balance. We conclude that herbivore pressure is an important driver of the balance of plant interactions in semi-arid environments.


Subject(s)
Ecosystem , Herbivory , Argentina , Plants , Poaceae
3.
Front Microbiol ; 9: 1755, 2018.
Article in English | MEDLINE | ID: mdl-30131780

ABSTRACT

Microbial interactions play a key role in ecosystem functioning, with nutrient availability as an important determinant. Although phylogenetically distant bacteria and fungi commonly co-occur in nature, information on their cross-kingdom interactions under unstable, extreme environments remains poor. Hence, the aims of this work were to evaluate potential in vitro interactions among fungi and bacteria isolated from a phosphorous oligotrophic aquatic system in the Cuatro Ciénegas Basin, Mexico, and to test the nutrients-based shifts. We assessed growth changes in bacteria (Aeromonas and Vibrio) and fungi (Coprinellus micaceus, Cladosporium sp., and Aspergillus niger) on co-cultures in relation to monocultures under diverse nutrient scenarios on Petri dishes. Interactions were explored using a network analysis, and a metabolome profiling for specific taxa. We identified nutrient-dependent patterns, as beneficial interactions dominated in low-nutrients media and antagonistic interactions dominated in rich media. This suggests that cross-kingdom synergistic interactions might favor microbial colonization and growth under low nutrient conditions, representing an adaptive trait to oligotrophic environments. Moreover, our findings agree with the stress-gradient hypothesis, since microbial interactions shifted from competition to cooperation as environmental stress (expressed as low nutrients) increased. At a functional level consistent differences were detected in the production of secondary metabolites, agreeing with plate bioassays. Our results based on culture experiments, provides evidence to understand the complexity of microbial dynamics and survival in phosphorous-depleted environments.

4.
Proc Biol Sci ; 285(1885)2018 08 22.
Article in English | MEDLINE | ID: mdl-30135157

ABSTRACT

Understanding the variation in species interactions along environmental stress gradients is crucial for making robust ecological predictions about community responses to changing environmental conditions. The facilitation-competition framework has provided a strong basis for predictions (e.g. the stress-gradient hypothesis, SGH), yet the mechanisms behind patterns in animal interactions on stress gradients are poorly explored in particular for mobile animals. Here, we proposed a conceptual framework modelling changes in facilitation costs and benefits along stress gradients and experimentally tested this framework by measuring fitness outcomes of benefactor-beneficiary interactions across resource quality levels. Three arthropod consumer models from a broad array of environmental conditions were used including aquatic detritivores, potato moths and rainforest carrion beetles. We detected a shift to more positive interactions at increasing levels of stress thereby supporting the application of the SGH to mobile animals. While most benefactors paid no significant cost of facilitation, an increase in potato moth beneficiary's growth at high resource stress triggered costs for benefactors. This study is the first to experimentally show that both costs and benefits function simultaneously on stress gradients for animals. The proposed conceptual framework could guide future studies examining species interaction outcomes for both animals and plants in an increasingly stressed world.


Subject(s)
Crustacea/physiology , Insecta/physiology , Stress, Physiological , Animals , Coleoptera/physiology , Models, Biological , Moths/physiology , Rainforest , Rivers , Solanum tuberosum , South America
5.
J Hered ; 108(5): 469-478, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28369439

ABSTRACT

Species inhabiting drylands commonly depend on the surrounding vegetation for recruitment under stress, while competition may affect populations in moister environments. Our objective was to analyze how different climates and vegetation affect the fine-scale spatial genetic structure (SGS) of the columnar cactus Echinopsis terscheckii. At 4 sites, we estimated vegetation cover by digitized patches and the normalized difference vegetation index (NDVI). We mapped 30 individuals per population and collected tissue for isozyme electrophoresis using 15 putative loci. Spatial autocorrelation between all possible genotype pairs and the number of genetically homogeneous groups and families were calculated for each population. Greater cover (66%) and average NDVI values were detected in the most humid habitat that consisted of fewer, larger, and more dispersed vegetation patches. All populations were genetically diverse and showed significant SGS. Positive correlations were found between the distance at which maximum autocorrelation and kinship values were reached and vegetation area and patch size. Also higher NDVI values were associated with lower number of patches. Populations exposed to higher precipitation and vegetation cover consisted of sparse individuals that clustered at larger distances whereas vegetation patches in arid climates produced groups of closely related genotypes at small distances. These results support the stress-gradient genetic hypothesis. Under water stress, facilitation promotes establishment underneath patchy vegetation resulting in fine-scale family structure. In moister xerophilous forests, competition for resources, that is, light, results in sparse individuals and thus coarse-scale neighborhoods. This information can guide conservation and/or restoration efforts, such as the spatial scale to be considered in germplasm collection.


Subject(s)
Cactaceae/genetics , Ecosystem , Genetics, Population , Argentina
6.
Ecology ; 98(3): 794-806, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27987317

ABSTRACT

A proposed refinement to the stress-gradient hypothesis requires consideration of the strategies of the interacting species and the characteristics of the stress factors. While the strength and direction of these interactions can be predicted for different ecosystems, this idea remains largely untested in the field. We performed a manipulative field experiment complemented with a descriptive study to test the predictions in a natural setting that represents the extreme end of a precipitation gradient. There, wind driven desiccation and water availability are the main stressors (non-resource and resource-based stresses, respectively). We evaluated the interaction between the shrub and grasses that are dominant in the Patagonian steppe. The species had differences in morpho-functional traits and drought tolerance that fit into the C-S axis of Grime's strategies. We experimentally separated root zones to limit direct competition for soil moisture and reduce the resource-based stress on grasses. We also manipulated the distance to shrubs to evaluate non-resource stress amelioration by canopies (e.g., sun and wind) on grasses. Finally, we evaluated the distribution of naturally established C and S grasses in the neighborhood of C and S shrubs to infer process-pattern relationships. Our growth data coincide to a large degree to the predictions. We found positive effects on the growth of beneficiaries when stress was non-resource based and when strategies differed (i.e., Cshrub -Sgrass and Sshrub -Cgrass ). We also found strong negative effects when the abiotic stress was driven by water, particularly on C grasses. Additionally, shrubs only increased the survival of grasses when strategies differed (i.e., Cshrub -Sgrass and Sshrub -Cgrass ). Our manipulative and descriptive study supported previous results that showed that stress-tolerant species are important for the persistence of competitive species at high stress. While the applicability and generality of these predictions remains to be tested with more field experiments, some ecological factors, such as stress types and species traits, can explain much of the variation in how dominant shrubs and grasses interact in this extreme arid environment. Moreover, this framework could be extended to specifically test the importance of facilitation under different levels of stress.


Subject(s)
Ecosystem , Poaceae/physiology , Ecology , Soil , Water
7.
Biol Rev Camb Philos Soc ; 90(3): 877-90, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25174581

ABSTRACT

Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies.


Subject(s)
Biodiversity , Ecosystem , Animals , Environment , Invertebrates/physiology , Predatory Behavior , Vertebrates/physiology
8.
Front Plant Sci ; 5: 387, 2014.
Article in English | MEDLINE | ID: mdl-25161660

ABSTRACT

While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.

SELECTION OF CITATIONS
SEARCH DETAIL