ABSTRACT
This study examined the associations of language brokering stress intensity and exposure with Mexican-origin youths' cortisol responses when brokering for fathers and mothers, and the moderating role of youths' brokering efficacy in these relations. Participants were 289 adolescents (Mage = 17.38, SD = .94, 52% girls) in immigrant families. When brokering for mothers, stress exposure was related to flatter (less healthy) same-day diurnal slopes in youth. When brokering for fathers, daily brokering efficacy buffered the detrimental link between stress intensity and youths' same-day cortisol slopes. When brokering for fathers/mothers, stress intensity and exposure were related to flatter (less healthy) next-day diurnal slopes. Although daily brokering stress can relate to youth physiologic functioning, feeling efficacious about brokering may buffer the negative ramifications of stress.
Subject(s)
Emigrants and Immigrants , Hydrocortisone , Adolescent , Fathers , Female , Humans , Language , Male , MothersABSTRACT
Dental interfaces are subject to mixed-mode loading. This study provides practical guidance for determining interfacial fracture toughness of dental ceramic systems. We address interfacial fracture of a composite resin cement sandwiched between two dental ceramic materials. Emphasis is placed on sandwich disc specimens with cracks originating from elliptical-shaped flaws near the center, for which analytical fracture mechanics methods fail to predict. The interaction integral method is used to provide accurate finite element solutions for cracks with elliptical-shaped flaws in a Brazil-nut-sandwich specimen. The developed model was first validated with existing experimental data and then used to evaluate the three most widely used dental ceramic systems: polycrystalline ceramics (zirconia), glass-ceramics (lithium disilicate), and feldspathic ceramics (porcelain). Contrary to disc specimens with ideal cracks, those with cracks emanating from elliptical-shaped flaws do not exhibit a monotonic increase in interfacial toughness. Also, interfacial fracture toughness is seen to have a direct relationship with the aspect ratio of elliptical-shaped flaws and an inverse relationship with the modulus ratio of the constituents. The presence of an elliptical-shaped flaw significantly changes the interfacial fracture behavior of sandwich structures. Semi-empirical design equations are provided for fracture toughness and stress intensity factors for interfacial cracks. The developed design equations provide practical guidance for determining interfacial fracture toughness of selected dental ceramic material systems. Those equations take into account four critical factors: size of the elliptical flaw, modulus ratio of constituent materials, loading angle, and applied load.
ABSTRACT
The purpose of this research is to compare both British standard BS 7910 (2013) and American standard API 579/ASME FFS-1 (2016) stress intensity factor (SIF) solutions by considering a series of semielliptical surface cracks located in the external surface of a pressurized hollow cylinder in the axial direction. Finite element analysis was used as a comparison basis for both standards' SIF results. The solution from the British standard provided consistent results compared to Finite Element (FE) results for crack depth not much higher than half the thickness in the deepest and surface-breaking points. Above those limits, the British standard's solutions diverged quite a lot from the American standard, whose results followed FE values for every crack depth/thickness ratio tested with a maximum percentage difference of 1.83%.
ABSTRACT
This work evaluates the experimental warming effects on phenology and grain yield components of wheat in the Yaqui Valley, Sonora, México, using CIRNO C2008 variety from Triticum durum L., as a model during the cropping cycle of 2016-2017 (December to April). Infrared radiators were deployed to induce experimental warming by 2 °C above ambient crop canopy temperature, in a temperature free-air controlled enhancement system. Temperature was controlled by infrared temperature sensors placed in eight plots which covered a circle of r = 1.5 m starting five days after germination until harvest. The warming treatment caused a reduction of phenophases occurrence starting at the stem extension phenophase. Such phenological responses generated a significant biological cycle reduction of 14 days. Despite this delay, CIRNO C2008 completed its biological cycle adequately. However, plant height under the warming treatment was reduced significantly and differences were particularly observed at the final phenophases of the vegetative cycle. Plant height correlated negatively with spikes length, spikes mass, and number of filled grains. Warming also reduced grain yield in 33%. The warming treatment caused a stress intensity (SI = 1-yield warming/yield control) of 39.4% and 33.2% in biomass and grain yield, respectively. The differences in stress intensities between biomass and grain yield were based on plant height reduction. Grain mass was not affected, demonstrating the crop capability for remobilization and adequate distribution of elaborated substances for the spikes under warming conditions.