Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.061
Filter
1.
Braz J Microbiol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951478

ABSTRACT

Chitinases are promising enzymes for a multitude of applications, including chitooligosaccharide (COS) synthesis for food and pharmaceutical uses and marine waste management. Owing to fungal diversity, fungal chitinases may offer alternatives for chitin degradation and industrial applications. The rapid reproduction cycle, inexpensive growth media, and ease of handling of fungi may also contribute to reducing enzyme production costs. Thus, this study aimed to identify fungal species with chitinolytic potential and optimize chitinase production by submerged culture and enzyme characterization using shrimp chitin. Three fungal species, Coriolopsis byrsina, Trichoderma reesei, and Trichoderma harzianum, were selected for chitinase production. The highest endochitinase production was achieved in C. byrsina after 168 h cultivation (0.3 U mL- 1). The optimal temperature for enzyme activity was similar for the three fungal species (up to 45 and 55 ºC for endochitinases and exochitinases, respectively). The effect of pH on activity indicated maximum hydrolysis in acidic pH (4-7). In addition, the crude T. reesei extract showed promising properties for removing Candida albicans biofilms. This study showed the possibility of using shrimp chitin to induce chitinase production and enzymes that can be applied in different industrial sectors.

2.
Sci Rep ; 14(1): 14913, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942961

ABSTRACT

Β-glucans are polysaccharide macromolecules that can be found in the cell walls of molds, such as Rhizopus oryzae. They provide functional properties in food systems and have immunomodulatory activity, anticancer, and prebiotic effects; reduce triglycerides and cholesterol; and prevent obesity, among others benefits. Furthermore, potato starch production requires a large amount of water, which is usually discharged into the environment, creating problems in soils and bodies of water. The physical parameters to produce ß-glucans were determined, liquid waste from potato starch processing was used and native Rhizopus oryzae was isolated and identified from cereal grains. The isolates grew quickly on the three types of agars used at 25 °C and 37 °C, and they did not grow at 45 °C. Rhizopus oryzae M10A1 produced the greatest amount of ß-glucans after six days of culture at 30 °C, pH 6, a stirring rate of 150 rpm and a fermentation volume of 250 mL. By establishing the physical fermentation parameters and utilizing the liquid waste from potato starch, Rhizopus oryzae M10A1 yielded 397.50 mg/100 g of ß-glucan was obtained.


Subject(s)
Fermentation , Rhizopus oryzae , Solanum tuberosum , Starch , beta-Glucans , beta-Glucans/metabolism , Solanum tuberosum/microbiology , Solanum tuberosum/metabolism , Starch/metabolism , Rhizopus oryzae/metabolism , Hydrogen-Ion Concentration , Rhizopus/metabolism , Temperature
3.
Life (Basel) ; 14(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929739

ABSTRACT

The production of citric acid, a vital agricultural commodity utilized across various industries such as food, beverages, pharmaceuticals, agriculture, detergents, and cosmetics, predominantly relies on microbial fermentation, with Aspergillus niger accounting for approximately 90% of global production. In this study, we aimed to optimize the key factors influencing citric acid production, with a focus on strains, fermentation techniques, and carbon sources, particularly sugarcane molasses. A. niger, sourced from the Botany department/Biotechnology laboratories at Govt. College of Science, Lahore, was employed for citric acid production. The process involved inoculum preparation through spore collection from 3 to 5 days of cultured PDA slants. The fermentation medium, comprising cane molasses with a 15% sugar concentration, was meticulously prepared and optimized for various factors, including magnesium sulfate, potassium ferrocyanide, time of addition of potassium ferrocyanide, ammonium oxalate, and calcium chloride. Our optimization results shed light on the significant impact of different factors on citric acid production. For instance, the addition of 0.4 g/L magnesium sulfate led to a maximum yield of 75%, while 2 g/L potassium ferrocyanide, added at 24 h, achieved a yield of 78%. Remarkably, ammonium oxalate, at a concentration of 10 g/L, resulted in a notable 77% yield. Conversely, the addition of calcium chloride exhibited negligible effects on citric acid production, with the control group yielding more at 78%. Our study underscores the potential for optimizing factors to enhance citric acid production by A. niger in submerged fermentation. These findings highlight the pivotal role of magnesium sulfate, potassium ferrocyanide, and ammonium oxalate in augmenting citric acid yields while emphasizing the minimal impact of calcium chloride. Ultimately, these insights contribute to advancing our understanding of microbial citric acid biosynthesis, providing valuable implications for industrial applications and future research endeavors.

4.
Microorganisms ; 12(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38930489

ABSTRACT

Amidst worsening climate change, drought stress imperils global agriculture, jeopardizing crop yields and food security, thereby necessitating the urgent exploration of sustainable methods like biopriming for the harnessing of beneficial microorganisms to bolster plant resilience. Recent research has revealed diverse biological compounds with versatile applications produced by Schizophyllum commune, rendering this fungus as a promising contender for biopriming applications. For the first time, this study aimed to investigate the potential of S. commune exo- (EPSH) and intra-polysaccharides (IPSH) isolated from two strains-Italian (ITA) and Serbian (SRB)-under submerged cultivation to enhance the resilience of Pisum sativum L. seeds through the biopriming technique. Testing of the seed quality for the bioprimed, hydroprimed, and unprimed seeds was conducted using a germination test, under optimal and drought conditions, while characterization of the PSHs included FTIR analysis, microanalysis, and determination of total protein content (TPC). The FTIR spectra of EPSH and IPSH were very similar but revealed the impurities, while microanalysis and TPC confirmed a different presence of proteins in the isolated PSHs. In optimal conditions, the IPSH SRB increased germination energy by 5.50% compared to the control; however, the highest percentage of germination (94.70%) was shown after biopriming with the PSH isolated from the ITA strain. Additionally, all assessed treatments resulted in a boost in seedling growth and biomass accumulation, where the ITA strain demonstrated greater effectiveness in optimal conditions, while the SRB strain showed superiority in drought conditions. The drought tolerance indices increased significantly in response to all examined treatments during the drought, with EPSH ITA (23.00%) and EPSH SRB (24.00%) demonstrating the greatest effects. Results of this preliminary study demonstrate the positive effect of isolated PSH, indicating their potential as biopriming agents and offering insights into novel strategies for agricultural resilience.

5.
Micromachines (Basel) ; 15(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930743

ABSTRACT

We propose a novel passive micromixer leveraging STC (split-to-circulate) flow characteristics and analyze its mixing performance comprehensively. Three distinct designs incorporating submerged circular walls were explored to achieve STC flow characteristics, facilitating flow along a convex surface and flow impingement on a concave surface. Across a broad Reynolds number range (0.1 to 80), the present micromixer substantially enhances mixing, with a degree of mixing (DOM) consistently exceeding 0.84. Particularly, the mixing enhancement is prominent within the low and intermediate range of Reynolds numbers (0.1

6.
Biomimetics (Basel) ; 9(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921208

ABSTRACT

Submerged aquatic vegetation plays a fundamental role as a habitat for the biodiversity of marine species. To carry out the research and monitoring of submerged aquatic vegetation more efficiently and accurately, it is important to use advanced technologies such as underwater robots. However, when conducting underwater missions to capture photographs and videos near submerged aquatic vegetation meadows, algae can become entangled in the propellers and cause vehicle failure. In this context, a neurobiologically inspired control architecture is proposed for the control of unmanned underwater vehicles with redundant thrusters. The proposed control architecture learns to control the underwater robot in a non-stationary environment and combines the associative learning method and vector associative map learning to generate transformations between the spatial and velocity coordinates in the robot actuator. The experimental results obtained show that the proposed control architecture exhibits notable resilience capabilities while maintaining its operation in the face of thruster failures. In the discussion of the results obtained, the importance of the proposed control architecture is highlighted in the context of the monitoring and conservation of underwater vegetation meadows. Its resilience, robustness, and adaptability capabilities make it an effective tool to face challenges and meet mission objectives in such critical environments.

7.
Chemosphere ; 362: 142582, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871192

ABSTRACT

This investigation elucidates the influence of micron-scale aeration bubbles on the improvement of anti-fouling characteristics within submerged membrane bioreactors (sMBRs). A systematic examination of sludge properties, hydraulic dynamics, and fouling tendencies revealed that the application of microbubble aeration, specifically at dimensions of 100 µm, 80 µm, and 30 µm, significantly reduced sludge electrostatic repulsion and augmented particle size distribution, as opposed to the utilization of coarse bubble aeration of 1 mm. Notably, the employment of 100 µm bubbles achieved a significant reduction in the proportion of smaller particles (<10 µm) and sludge viscosity, thereby facilitating a more homogenous and vigorous turbulence at the membrane interface. These optimized conditions were instrumental in the substantial reduction of membrane fouling, which was corroborated by the diminished rate of fouling, reduced resistance accumulation, and lesser foulant deposition. The investigation identified sludge particle size, turbulent kinetic energy, and shear stress as the predominant factors influencing the development of membrane fouling. The findings underscore the pronounced advantages of employing 100 µm-sized bubbles in aeration strategies, providing enhanced understanding for the optimization of aeration parameters to improve sMBR efficiency and maintenance.

8.
Plants (Basel) ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891236

ABSTRACT

Submerged macrophytes in eutrophic aquatic environments adapt to changes in ammonia nitrogen (NH4-N) levels by modifying their levels of free amino acids (FAAs) and soluble carbohydrates (SCs). As symbionts of submerged macrophytes, epiphytic bacteria have obvious host specificity. In the present study, the interspecific differences in the FAA and SC contents of Hydrilla verticillata (Linn. f.) Roylep, Vallisneria natans Hara and Chara braunii Gmelin and their leaf epiphytic bacterial communities were assessed in response to increased NH4-N concentrations. The results revealed that the response of the three submerged macrophytes to NH4-N stress involved the consumption of SCs and the production of FAAs. The NH4-N concentration had a greater impact on the variation in the FAA content, whereas the variation in the SC content was primarily influenced by the species. At the phylum level, the relative abundance of Nitrospirota on the leaves exhibited specific differences, with the order H. verticillata > V. natans > C. braunii. The dominant genera of epiphytic bacteria with denitrification effects on V. natans, H. verticillata and C. braunii leaves were Halomonas, Acinetobacter and Bacillus, respectively. When faced with NH4-N stress, the variation in epiphytic bacterial populations associated with ammonia oxidation and denitrification among submerged macrophytes could contribute to their divergent responses to heightened nitrogen levels.

9.
Article in English | MEDLINE | ID: mdl-38842070

ABSTRACT

OBJECTIVES: To assess the impact of a two-piece abutment workflow on enhancing the stability of the alveolar bone and gingiva surrounding the dental implant, and to determine the level of patient satisfaction. MATERIALS AND METHODS: A total of 48 patients with dentition defect in the posterior region were included and divided into two groups: the two-piece abutment workflow (TAW) and the sealing screw with submerged healing workflow (SHW). Marginal bone level (MBL), soft tissue indicators, oral hygiene indicators, and patient satisfaction were assessed and recorded partially at 0, 3, 6, and 12 months after surgery. The primary outcome was the change of MBL in different time periods. A generalized linear mixed model (GLMM) was used to take into account the correlated nature of the data, and adjust for potential confounding factors within inter-group differences. RESULTS: The survival rate of implants and prosthesis reached 100% at 12-month follow-up, with an average decrease of 0.25 mm (SD 0.23 mm) of MBL in the TAW group and 0.48 mm (SD 0.45 mm) in the SHW group. The change of MBL in the TAW group (0.15 ± 0.31 mm) was significantly lower than the SHW group (0.41 ± 0.41 mm) through the analysis of GLMM within 6 months, while no significance was found in 12 months. Moreover, less gingival pain and oppression during prosthesis loading, and less time consumption overall duration were showed in the TAW group through Visual Analogue Scale (VAS, p < 0.05). CONCLUSIONS: Within a 6-month period, the two-piece abutment workflow showed superior efficacy in preserving the integrity of the marginal bone level. Furthermore, it streamlined treatment procedures and mitigated discomfort, hence increasing patient satisfaction.

10.
J Environ Manage ; 364: 121421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875982

ABSTRACT

Submerged plants play a significant role in the remediation and purification of polluted water bodies. Reconstruction of submerged plants has been considered as an important ecological method to restore aquatic ecosystems. However, large-scale and efficient plantation of submerged plants in water restoration is a huge challenge. This paper proposes a novel mechanized planting method for submerged plants utilizing nutrition pots as planting units. Firstly, the details of the mechanized planting method were introduced. The mechanized planting method involves pre-planting the reproductive bodies of submerged plants in degradable nutrition pots, and then implanting them into the underwater soil through a planting device. Secondly, the interaction force between the nutrition pot and the soil was measured. It was found that the implantation force of nutrition pots increases with planting velocity. The planting force shows a significant increase trend when the water content in the soil decreases. Thirdly, the deformation of the nutrition pot was studied through simulations. It was discovered that the deformation of the nutrition pot mainly occurs at the bottom and the side walls near the bottom, and the limited deformation ensures the integrity of the nutrition pot. Finally, a planting device with a linear motion mechanism was designed, and a typical submerged plant, Vallisneria natans was tested, using agricultural paper seedling containers as the nutrition pots. It was demonstrated that the mechanized device successfully planted submerged plant nutrition pots into the soil, and the submerged plants survived and showed a clear growth trend. The mechanized planting method of submerged plants proposed in this article is expected to provide a new and friendly technology for ecological restoration of water source.


Subject(s)
Ecosystem , Environmental Restoration and Remediation/methods , Soil , Biodegradation, Environmental
11.
Materials (Basel) ; 17(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793377

ABSTRACT

Hot-rolled backup rolls are widely used in steel rolling and usually need to be repaired by arc hardfacing after becoming worn. However, a corrugated-groove defect commonly occurs on the roll surface due to the uneven hardness distribution in the hardfacing layers, affecting the proper usage of the roll. Accordingly, a new swing-arc submerged arc welding (SA-SAW) process is proposed to attempt to solve this drawback. The microstructure and hardness are then investigated experimentally for both SAW and SA-SAW hardfacing layers. It is revealed that a self-tempering effect occurs in the welding pass bottom and the welding pass side neighboring the former pass for both processes, refining the grain in the two areas. In all the zones, including the self-tempering zone (STZ), heat-affected zone (HAZ), and not-heat-affected zone in the welding pass, both SAW and SA-SAW passes crystallize in a type of columnar grain, where the grains are the finest in STZ and the coarsest in HAZ. In addition, the arc swing improves the microstructure homogeneity of the hardfacing layers by obviously lowering the tempering degree in HAZ while promoting the even distribution of the arc heat. Accordingly, the hardness of the SA-SAW bead overall increases and distributes more uniformly with a maximum difference of < 80 HV0.5 along the horizontal direction of the bead. This hardness difference in SA-SAW is accordingly decreased by ~38.5% compared to that of the SAW bead, further indicating the practicability of the new process.

12.
Front Microbiol ; 15: 1378834, 2024.
Article in English | MEDLINE | ID: mdl-38784807

ABSTRACT

The cultivation system requires that the approach providing biomass for all types of metabolic analysis is of excellent quality and reliability. This study was conducted to enhance the efficiency and yield of antifungal substance (AFS) production in Streptomyces yanglinensis 3-10 by optimizing operation conditions of aeration, agitation, carbon source, and incubation time in a fermenter. Dissolved oxygen (DO) and pH were found to play significant roles in AFS production. The optimum pH for the production of AFS in S. yanglinensis 3-10 was found to be 6.5. As the AFS synthesis is generally thought to be an aerobic process, DO plays a significant role. The synthesis of bioactive compounds can vary depending on how DO affects growth rate. This study validates that the high growth rate and antifungal activity required a minimum DO concentration of approximately 20% saturation. The DO supply in a fermenter can be raised once agitation and aeration have been adjusted. Consequently, DO can stimulate the development of bacteria and enzyme production. A large shearing effect could result from the extreme agitation, harming the cell and deactivating its products. The highest inhibition zone diameter (IZD) was obtained with 3% starch, making starch a more efficient carbon source than glucose. Temperature is another important factor affecting AFS production. The needed fermentation time would increase and AFS production would be reduced by the too-low operating temperature. Furthermore, large-scale fermenters are challenging to manage at temperatures that are far below from room temperature. According to this research, 28°C is the ideal temperature for the fermentation of S. yanglinensis 3-10. The current study deals with the optimization of submerged batch fermentation involving the modification of operation conditions to effectively enhance the efficiency and yield of AFS production in S. yanglinensis 3-10.

13.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38786674

ABSTRACT

Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.

14.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791210

ABSTRACT

Functional microexons have not previously been described in filamentous fungi. Here, we describe a novel mechanism of transcriptional regulation in Trichoderma requiring the inclusion of a microexon from the Xlr2 gene. In low-glucose environments, a long mRNA including the microexon encodes a protein with a GAL4-like DNA-binding domain (Xlr2-α), whereas in high-glucose environments, a short mRNA that is produced encodes a protein lacking this DNA-binding domain (Xlr2-ß). Interestingly, the protein isoforms differ in their impact on cellulase and xylanase activity. Deleting the Xlr2 gene reduced both xylanase and cellulase activity and growth on different carbon sources, such as carboxymethylcellulose, xylan, glucose, and arabinose. The overexpression of either Xlr2-α or Xlr2-ß in T. virens showed that the short isoform (Xlr2-ß) caused higher xylanase activity than the wild types or the long isoform (Xlr2-α). Conversely, cellulase activity did not increase when overexpressing Xlr2-ß but was increased with the overexpression of Xlr2-α. This is the first report of a novel transcriptional regulation mechanism of plant-cell-wall-degrading enzyme activity in T. virens. This involves the differential expression of a microexon from a gene encoding a transcriptional regulator.


Subject(s)
Cellulases , Fungal Proteins , Gene Expression Regulation, Fungal , Trichoderma , Fungal Proteins/metabolism , Fungal Proteins/genetics , Trichoderma/genetics , Trichoderma/metabolism , Trichoderma/enzymology , Cellulases/metabolism , Cellulases/genetics , Endo-1,4-beta Xylanases/metabolism , Endo-1,4-beta Xylanases/genetics , Cell Wall/metabolism , Sugars/metabolism
15.
Bioresour Technol ; 402: 130779, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701977

ABSTRACT

Submerged macrophytes are effective in ecological restoration of water bodies polluted by nitrogen and phosphorus, and its restoration capacity depends on underwater illumination condition. This study explored the influencing mechanism of illumination on Vallisneria spinulosa Yan (V. spinulosa Yan) for water restoration. Addition of underwater light source increased the total nitrogen, ammonia nitrogen, total phosphorus, and phosphate removal loads of the V. spinulosa Yan growth system by 61.5, 39.2, 8.5, and 5.0 mg m-2 d-1, respectively. Meanwhile, the growth of V. spinulosa Yan was obviously promoted, even with high water turbidity. Although the biological nitrogen removal processes were inhibited by adding underwater light source, the growth of V. spinulosa Yan can be significantly improved, thus enhancing the efficiency of water purification via the absorption of nitrogen and phosphorus by V. spinulosa Yan. This study provides a theoretical foundation and technical support for application of submerged macrophytes in ecological water restoration.


Subject(s)
Light , Nitrogen , Phosphorus , Rhizosphere , Water Purification , Water Purification/methods , Hydrocharitaceae/metabolism , Hydrocharitaceae/growth & development , Biodegradation, Environmental , Water , Ecosystem
16.
Crit Rev Biotechnol ; : 1-20, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38817002

ABSTRACT

Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, ß-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.

17.
Sci Total Environ ; 934: 173357, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38772483

ABSTRACT

Submerged macrophytes are integral to the functioning of shallow lakes through their interaction with microorganisms. However, we have a limited understanding of how microbial communities in shallow lakes respond when macrophytes are restored after being historically extirpated. Here, we explored the interactions between prokaryotic communities and carbon utilization in two lakes where submerged macrophytes were restored. We found restoration reduced total carbon in sediment by 8.9 %-27.9 % and total organic carbon by 16.7 %-36.9 % relative to control treatment, but had no effects on carbon content in the overlying water. Sediment microbial communities were more sensitive to restoration than planktonic microbes and showed enhanced utilization of simple carbon substrates, such as Tween 40, after restoration. The increase in carbon utilization was attributed to declines in the relative abundance of some genera, such as Saccharicenans and Desertimonas, which were found weakly associated with the utilization of different carbon substrates. These genera likely competed with microbes with high carbon utilization in restored areas, such as Lubomirskia. Our findings highlight how restoring submerged macrophytes can enhance microbial carbon utilization and provide guidance to improve the carbon sequestration capacity of restored shallow lakes.


Subject(s)
Carbon , Lakes , Microbiota , Lakes/microbiology , Carbon/metabolism , Water Microbiology , Carbon Sequestration , Geologic Sediments/microbiology , Bacteria/metabolism , Environmental Restoration and Remediation/methods
18.
Sci Total Environ ; 931: 173024, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38719048

ABSTRACT

Among the problems caused by water eutrophication, the issue of odor compounds has attracted notable attention. ß-Cyclocitral, a widely distributed and versatile odor compound, is commonly derived from both algae and aquatic plants. Planting aquatic plants is a common method of water purification. However, there is limited study on their impact on ß-cyclocitral levels in water. Here, we conducted a study on the ß-cyclocitral levels in water and the submerged plant leaves under three nutrient levels and six plant density treatments. Our findings revealed the following: (1) Chlorophyll-a (Chla), ß-cyclocitral in the water (Wcyc), ß-cyclocitral in Potamogeton lucens leaves (Pcyc) and the biomass of the submerged plants increase with rising nutrient concentration, which increased about 83 %, 95 %, 450 %, 320 % from eutrophic treatment to oligotrophic treatment, respectively. (2) In water, ß-cyclocitral is influenced not only by algae but also by submerged plants, with primary influencing factors varying across different nutrient levels and plant densities. The main source of ß-cyclocitral in water becomes from plants to algae as the water eutrophication and plant density decrease. (3) As submerged plants have the capability to emit ß-cyclocitral, the release of ß-cyclocitral increases with the density of submerged plants. Hence, when considering planting submerged plants for water purification purposes, it is crucial to carefully manage submerged plant density to mitigate the risk of odor pollution emanating from aquatic plants. This study offers fresh insights into selecting optimal water density for submerged plants and their role in mitigating the release of ß-cyclocitral.


Subject(s)
Eutrophication , Odorants , Water Pollutants, Chemical , Odorants/analysis , Water Pollutants, Chemical/analysis , Aldehydes/analysis , Plants , Nutrients/analysis , Environmental Monitoring , Diterpenes
19.
J Hazard Mater ; 472: 134510, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704909

ABSTRACT

Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.


Subject(s)
Geologic Sediments , Introduced Species , Lakes , Microplastics , Nitrates , Plants , Geologic Sediments/microbiology , Nitrates/metabolism , Plants/metabolism , Microplastics/metabolism , Lakes/microbiology , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Biodiversity , Denitrification
20.
Maxillofac Plast Reconstr Surg ; 46(1): 17, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727979

ABSTRACT

BACKGROUND: Immediate implant placement has gained popularity due to its several advantages. However, immediate placement has its challenges, including concerns about primary stability and bone formation around the implant. The aim of the present study is to evaluate the clinical outcomes of tapered, sand-blasted, and acid-etched internal submerged dental implants in various regions of the jaw bones and to provide a positional rationale for immediate implant placement. METHODS: Between 2009 and 2018, a single surgeon at Seoul National University Dental Hospital in Seoul, Korea, immediately inserted 49 dental implants with tapered bone-level design after extraction, in a total of 34 patients. The clinical outcomes were collected and evaluated, focusing on location of implant placement and marginal bone loss (MBL), with consideration of other parameters such as implant diameter and length. RESULTS: Of 49 immediately installed Luna® (Shinhung Co., Seoul, Korea) dental implants, 23 were placed in the mandible, and 26 were set in the maxilla. The mean age of patients at the time of installation was 65.91 years, ranging from 40 to 86 years. The average follow-up period was 7.43 years, with a range of 5 to 14 years. After a 5-year retrospective evaluation of tapered, sand-blasted, and acid-etched internal submerged dental implants for immediate implant placement, the cumulative survival rate was 93.88%, with 100% survival rate in the mandible and premolar region of both the maxilla and mandible. CONCLUSIONS: After a 5-year evaluation, tapered, sand-blasted, and acid-etched internal submerged dental implants demonstrated good efficacy for immediate placement in various locations within the dental arches, exhibiting effective clinical performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...