Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Chemosphere ; 363: 142849, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009093

ABSTRACT

The present study focuses on the application of fungal-based microbial fuel cells (FMFC) for the degradation of organic pollutants including Acetaminophen (APAP), Para-aminophenol (PAP), Sulfanilamide (SFA), and finally Methylene Blue (MB). The objective is to investigate the patterns of degradation (both individually and as a mixture solution) of the four compounds in response to fungal metabolic processes, with an emphasis on evaluating the possibility of generating energy. Linear Sweep Voltammetry (LSV) has been used for electrochemical analysis of the targeted compounds on a Glassy Carbon Electrode (GCE). A dual chamber MFC has been applied wherein the cathodic compartment, the reduction reaction of oxygen was catalyzed by an elaborated biofilm of Trametes trogii, and the anodic chamber consists of a mixed solution of 200 mg L-1 APAP, PAP, MB, and SFA in 0.1 M PBS and an elaborated biofilm of Trichoderma harzianum. The obtained results showed that all the tested molecules were degraded over time by the Trichoderma harzianum. The biodegradation kinetics of all the tested molecules were found to be in the pseudo-first-order. The results of half-lives and the degradation rate reveal that APAP in its individual form degrades relatively slower (0.0213 h-1) and has a half-life of 33 h compared to its degradation in a mixed solution with a half-life of 20 h. SFA showed the longest half-life in the mixed condition (98 h) which is the opposite of its degradation as individual molecules (20 h) as the fastest molecule compared to other pollutants. The maximum power density of the developed MFC dropped from 0.65 mW m-2 to 0.32 mW m-2 after 45.5 h, showing that the decrease of the residual concentration of molecules in the anodic compartment leads to the decrease of the MFC performance.


Subject(s)
Biodegradation, Environmental , Bioelectric Energy Sources , Biofilms , Methylene Blue , Water Pollutants, Chemical , Water Pollutants, Chemical/metabolism , Methylene Blue/metabolism , Methylene Blue/chemistry , Acetaminophen/metabolism , Aminophenols/metabolism , Electrodes , Trametes/metabolism , Sulfanilamide/metabolism , Kinetics
2.
Am J Transl Res ; 16(5): 1925-1934, 2024.
Article in English | MEDLINE | ID: mdl-38883348

ABSTRACT

OBJECTIVE: To investigate the correlation between sulfamethoxazole-trimethoprim (SXT) resistance in Shigella flexneri (S.flexneri) and the presence of integrons and relevant antibiotic resistance genes. METHODS: We collected 115 strains of Shigella flexneri isolated from feces of children with diarrhea in Jinan from 2012 to 2020 and determined the minimum inhibitory concentration (MIC) of SXT by Etest method. The presence of class 1, class 2, and class 3 integron genes, variable region antibiotic resistance gene cassettes, and sul1, sul2, sul3, and SXT elements were detected using polymerase chain reaction (PCR). Positive results were further analyzed by DNA sequencing and BLAST comparison. RESULTS: In total, the resistance rate to SXT was 60.9% among the 115 S.flexneri strains. The prevalence of class 1 and class 2 integrons were 88.7% and 87.0%, respectively, with no class 3 integrons detected. Among the strains, 13.0% carried typical class 1 integrons with variable region antibiotic resistance gene cassettes dfrA17-aadA5 and dfrV, while 85.2% carried atypical class 1 integrons with variable region antibiotic resistance gene cassette blaoxa-30-aadA1. The variable region antibiotic resistance gene cassettes of class 2 integrons were all dfrA1+sat1+aadA1. There was a statistical difference between the presence of class 1 integrons and class 2 integrons between the SXT-sensitive and resistant S.flexneri strains (χ2=22.800, χ2=16.365, P<0.01, P<0.01). Integrons carrying dfrV and dfrA1 by integrons also showed a statistical difference in SXT resistance (χ2=9.422, χ2=16.365, P<0.01, P<0.01). PCR revealed the presence of sul1 and sul2 in 13.0% and 47.0% of strains, respectively, with neither sul3 nor SXT elements detected. There was a significant difference between the presence of sul1, sul2 between the SXT-sensitive and resistant S.flexneri strains (χ2=9.588, χ2=65.445, P<0.01, P<0.01). CONCLUSION: In summary, integrons are involved in SXT resistance of S.flexneri, and dfrV, dfrA1, sul1, sul2 are closely related to SXT resistance of S.flexneri.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124467, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38796892

ABSTRACT

The study aimed to determine the potential of the infrared (IR) spectrophotometric technique for measuring the content of sulphanilamide with the sulfonamide group. The study aimed to obtain the IR spectra of sulfanilamide and use the -SO2 band at 1114.37 for the quantitative assay, determining its area under the curve (AUC). The study gives an alternative approach to existing analytical techniques that require vast amounts of organic solvents, which are costly and can be toxic, thus impacting the environment and increasing the analysis cost. The study evaluated the method's whiteness and greenness by utilizing the Complex green analytical procedure index, analytical GREEness calculator and Red Green Blue algorithm tool. The linierity was found to be 5 to 30 µg/ml. The present study has developed an infrared (IR) spectroscopic method that employs a straightforward sample preparation technique in methanol. The IR spectroscopic method's linearity range was determined to be 5-30 µg/ml. The p-value was 0.001 at 95 % confidence level assuring better recovery. This method is evaluated according to the Q2R1 ICH guideline. It is applicable to routine quality control analysis without pre-extraction using green IR spectroscopy. In conclusion, the study demonstrated that IR spectrophotometric techniques can quantify sulfanilamide while reducing the use of organic solvents, contributing to the green-and-white analytical chemistry approach. The developed methods are reliable, accurate, and cost-effective and have the potential to be implemented in routine analysis of sulfanilamide.


Subject(s)
Spectrophotometry, Infrared , Sulfanilamide , Sulfanilamide/analysis , Sulfanilamide/chemistry , Spectrophotometry, Infrared/methods , Sulfanilamides/analysis , Sulfanilamides/chemistry , Algorithms , Reproducibility of Results
4.
ACS Appl Bio Mater ; 7(5): 2752-2761, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38662509

ABSTRACT

Carbon dots (CDs) were synthesized hydrothermally by mixing citric acid (CA) and an antifolic agent, sulfanilamide (SNM), employed for pH sensing and bacterial growth inactivation. Sulfanilamide is a prodrug; aromatic hetero cyclization of the amine moiety along with other chemical modifications produces an active pharmacological compound (chloromycetin and miconazole), mostly administered for the treatment of various microbial infections. On the other hand, the efficacy of the sulfanilamide molecule as a drug for antimicrobial activity was very low. We anticipated that the binding of the sulfanilamide molecule on the carbon dot (CD) surface may form antibacterial CDs. Citric acid was hybridized with sulfanilamide during the hydrothermal preparation of the CDs. The molecular fragments of bioactivated sulfanilamide molecule play a crucial role in bacterial growth inactivation for Gram-positive and Gram-negative bacteria. The functional groups of citric acid and sulfanilamide were conserved during the CD formation, facilitating the zwitterionic behavior of CDs associated with its photophysical activity. At low concentrations of CDs, the antibacterial activity was apparent for Gram-positive bacteria only. This Gram-positive bacteria selectivity was also rationalized by zeta potential measurement.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Carbon , Materials Testing , Microbial Sensitivity Tests , Particle Size , Sulfanilamide , Carbon/chemistry , Carbon/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Hydrogen-Ion Concentration , Sulfanilamide/chemistry , Sulfanilamide/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Quantum Dots/chemistry , Sulfanilamides/chemistry , Sulfanilamides/pharmacology , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects
5.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675368

ABSTRACT

Growing resistance to antimicrobials, combined with pathogens that form biofilms, presents significant challenges in healthcare. Modifying current antimicrobial agents is an economical approach to developing novel molecules that could exhibit biological activity. Thus, five sulfanilamide Schiff bases were synthesized under microwave irradiation and characterized spectroscopically and in silico. They were evaluated for their antimicrobial and antibiofilm activities against both Gram-positive and Gram-negative bacterial strains. Their cytotoxic potential against two cancer cell lines was also determined. Gram-positive bacteria were susceptible to the action of these compounds. Derivatives 1b and 1d inhibited S. aureus's growth (MIC from 0.014 mg/mL) and biofilm (IC from 0.029 mg/mL), while compound 1e was active against E. faecalis's planktonic and sessile forms. Two compounds significantly reduced cell viability at 5 µg/mL after 24 h of exposure (1d-HT-29 colorectal adenocarcinoma cells, 1c-LN229 glioblastoma cells). A docking study revealed the increased binding affinities of these derivatives compared to sulfanilamide. Hence, these Schiff bases exhibited higher activity compared to their parent drug, with halogen groups playing a crucial role in both their antimicrobial and cytotoxic effects.

6.
Chemosphere ; 355: 141806, 2024 May.
Article in English | MEDLINE | ID: mdl-38548087

ABSTRACT

Environmental challenges arising from organic pollutants pose a significant problem for modern societies. Efficient microbial resources for the degradation of these pollutants are highly valuable. In this study, the bacterial community structure of sludge samples from Taozi Lake (polluted by urban sewage) was studied using 16S rRNA sequencing. The bacterial phyla Proteobacteria, Bacteroidetes, and Chloroflexi, which are potentially important in organic matter degradation by previous studies, were identified as the predominant phyla in our samples, with relative abundances of 48.5%, 8.3%, and 6.6%, respectively. Additionally, the FAPROTAX and co-occurrence network analysis suggested that the core microbial populations in the samples may be closely associated with organic matter metabolism. Subsequently, sludge samples from Taozi Lake were subjected to enrichment cultivation to isolate organic pollutant-degrading microorganisms. The strain Sphingobacterium sp. GEMB-CSS-01, tolerant to sulfanilamide, was successfully isolated. Subsequent investigations demonstrated that Sphingobacterium sp. GEMB-CSS-01 efficiently degraded the endocrine-disrupting compound 17ß-Estradiol (E2). It achieved degradation efficiencies of 80.0% and 53.5% for E2 concentrations of 10 mg/L and 20 mg/L, respectively, within 10 days. Notably, despite a reduction in degradation efficiency, Sphingobacterium sp. GEMB-CSS-01 retained its ability to degrade E2 even in the presence of sulfanilamide concentrations ranging from 50 to 200 mg/L. The findings of this research identify potential microbial resources for environmental bioremediation, and concurrently provide valuable information about the microbial community structure and patterns within Taozi Lake.


Subject(s)
Environmental Pollutants , Sphingobacterium , Sewage/microbiology , Sphingobacterium/genetics , Sphingobacterium/metabolism , Lakes/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Estradiol/metabolism , Biodegradation, Environmental , Environmental Pollutants/metabolism , Sulfanilamides
7.
Polim Med ; 54(1): 27-34, 2024.
Article in English | MEDLINE | ID: mdl-38315072

ABSTRACT

BACKGROUND: Solubility is a fundamental physicochemical property of active pharmaceutical ingredients. The optimization of a dissolution medium aims not only to increase solubility and other aspects are to be included such as environmental impact, toxicity degree, availability, and costs. Obtaining comprehensive solubility characteristics of chemical compounds is a non-trivial and demanding process. Therefore, support from theoretical approaches is of practical importance. OBJECTIVES: This study aims to examine the accuracy of the reference solubility approach in the case of sulfanilamide dissolution in a variety of binary solvents. This pharmaceutically active substance has been extensively studied, and a substantial amount of solubility data is available. Unfortunately, using this set of data directly for theoretical modeling is impeded by noticeable inconsistencies in the published solubility data. Hence, this aspect is addressed by data curation using theoretical and experimental confirmations. MATERIAL AND METHODS: In the experimental part of our study, the popular shake-flask method combined with ultraviolet (UV) spectrophotometric measurements was applied for solubility determination. The computational phase utilized the conductor-like screening model for real solvents (COSMO-RS) approach. RESULTS: The analysis of the results of solubility calculations for sulfonamide in binary solvents revealed abnormally high error values for acetone-ethyl acetate mixtures, which were further confirmed with experimental measurements. Additional confirmation was obtained by extending the solubility measurements to a series of homologous acetate esters. CONCLUSIONS: Our study addresses the crucial issue of coherence of solubility data used for many theoretical inquiries, including parameter fitting of semi-empirical models, in-depth thermodynamic interpretations and application of machine learning protocols. The effectiveness of the proposed methodology for dataset curation was demonstrated for sulfanilamide solubility in binary mixtures. This approach enabled not only the formulation of a consistent dataset of sulfanilamide solubility binary solvent mixtures, but also its implementation as a qualitative tool guiding rationale solvent selection for experimental solubility screening.


Subject(s)
Solubility , Solvents , Sulfanilamide , Solvents/chemistry , Sulfanilamide/chemistry , Models, Chemical , Sulfanilamides/chemistry
8.
Environ Res ; 248: 118391, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38309562

ABSTRACT

Sulfonamides are a family of synthetic drugs with a broad-spectrum of antimicrobial activity. Like other antimicrobials, they have been found in aquatic environments, making their detection important. Herein, an electrochemical sensor was designed using tannic acid exfoliated few-layered MoS2 sheets, which were combined with a mixture of reduced graphene oxide (rGO) and graphite flakes (G). The rGO/G was formed using electrodeposition, by cycling from -0.5 to -1.5 V in an acidified sulfate solution with well dispersed GO and G. The exfoliated MoS2 sheets were drop cast over the wrinkled rGO/G surface to form the final sensor, GCE/rGO/G/ta-MoS2. The mixture of rGO/G was superior to pure rGO in formulating the sensor. The fabricated sensor exhibited an extended linear range from 0.1 to 566 µM, with a LOD of 86 nM, with good selectivity in the presence of various salts found in water and structurally related drugs from the sulfonamide family. The sensor showed very good reproducibility with the RSD at 0.48 %, repeatability and acceptable long term stability over a 10-day period. Good recovery from both tap and river water was achieved, with recovery ranging from 90.4 to 98.9 % for tap water and from 83.5 to 94.4 % for real river water samples.


Subject(s)
Graphite , Nanocomposites , Polyphenols , Molybdenum , Electrochemical Techniques , Reproducibility of Results , Sulfanilamide , Water
9.
Environ Sci Pollut Res Int ; 31(8): 11622-11632, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38221561

ABSTRACT

Identification of the transport of sulfonamide antibiotics in soils facilitates a better understanding of the environmental fate and behaviors of these ubiquitous contaminants. In this study, the mobility properties of sulfanilamide (SNM, a typical sulfonamide antibiotic) through saturated soils with different physicochemical characteristics were investigated. The results showed that the physicochemical characteristics controlled SNM mobility. Generally, the mobility of SNM was positively correlated with CEC values and soil organic matter content, which was mainly related to the interactions between the organic matter in soils and SNM molecules via π-π stacking, H-bonding, ligand exchange, and hydrophobic interaction. Furthermore, higher clay mineral content and lower sand content were beneficial for restraining SNM transport in the soils. Unlike Na+, Cu2+ ions could act as bridging agents between the soil grains and SNM molecules, contributing to the relatively weak transport of SNM. Furthermore, the trend of SNM mobility in different soil columns was unaffected by solution pH (5.0-9.0). Meanwhile, for a given soil, the SNM mobility was promoted as the solution pH values increased, which was caused by the enhanced electrostatic repulsion between SNM- species and soil particles as well as the declined hydrophobic interaction between SNM and soil organic matter. The obtained results provide helpful information for the contribution of soil physicochemical characteristics to the transport behaviors of sulfonamide antibiotics in soil-water systems.


Subject(s)
Soil Pollutants , Soil , Sulfanilamide , Soil/chemistry , Porosity , Soil Pollutants/analysis , Anti-Bacterial Agents/chemistry , Sulfonamides , Adsorption
10.
Bioresour Technol ; 395: 130337, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244937

ABSTRACT

Addressing the environmental contamination from heavy metals and organic pollutants remains a critical challenge. This study explored the resilience and removal potential of Pleurotus ostreatus GEMB-PO1 for copper. P. ostreatus GEMB-PO1 showed significant tolerance, withstanding copper concentrations up to 2 mM. Its copper removal efficiency ranged from 64.56 % at 0.5 mM to 22.90 % at 8 mM. Transcriptomic insights into its response to copper revealed a marked upregulation in xenobiotic degradation-related enzymes, such as laccase and type II peroxidases. Building on these findings, a co-remediation system using P. ostreatus GEMB-PO1 was developed to remove both copper and organic pollutants. While this approach significantly enhanced the degradation efficiency of organic contaminants, it concurrently exhibited a diminished efficacy in copper removal within the composite system. This study underscores the potential of P. ostreatus GEMB-PO1 in environmental remediation. Nevertheless, further investigation is required to optimize the simultaneous removal of organic pollutants and copper.


Subject(s)
Environmental Pollutants , Metals, Heavy , Pleurotus , Copper/metabolism , Pleurotus/metabolism , Environmental Pollutants/metabolism , Metals, Heavy/metabolism , Peroxidases/metabolism , Laccase/metabolism , Biodegradation, Environmental
11.
Chemosphere ; 349: 140817, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040260

ABSTRACT

Metal-based anodes have been used for a long time in the electrochemical oxidation processes to remediate groundwater. However, the high cost of this technique as well as the release of potentially toxic metals (ex, lead), are major barriers being fully implemented. As an alternative of metal-based anodes, in recent years, carbon-based anodes have been paid attention due to their eco-friendliness and cost-effectiveness. This study evaluated the oxidation performance of carbon fiber (CF) anode in a flow-through system. The CF anode degraded 45-87% of the target pollutant (sulfanilamide), depending on the current intensity applied. However, no further degradation of sulfanilamide was observed after the cathode, indicating that sulfanilamide degradation occurred mainly at the anode. This study also determined the effect of electrolytes on electrochemical oxidation using chloride (Cl-), sulfate (SO42-), bicarbonate (CO3-), and synthetic groundwater. Cl- and SO42- electrolytes were converted electrochemically into active species, thereby enhancing sulfanilamide degradation, while the bicarbonate and groundwater electrolytes inhibited oxidation performance by scavenging hydroxyl radicals. A series of scavenger tests and characterization showed that the direct oxidation and hydroxyl radicals involved the sulfanilamide degradation. Especially, the production of hydroxyl radicals is more favorable in high currents than in low currents. That is, CF anode contributed to the degradation by direct oxidation of carbon-based electrodes and generation of hydroxyl radicals. In summary, this study highlights how a CF anode is capable of effectively degrading organic pollutants via anodic oxidation.


Subject(s)
Bicarbonates , Water Pollutants, Chemical , Sulfanilamide , Carbon Fiber , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Carbon , Electrodes , Hydroxyl Radical/chemistry
12.
Environ Pollut ; 338: 122681, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37802288

ABSTRACT

Sulfonamide (SA) is an emerging contaminants and the efficient treatment of SA containing wastewater remains a challenge. Herein, SA degradation by gamma irradiation has been systematacially studied. SA (10 mg/L) could be totally removed with 1.5 kGy irradiation. Quenching experiments demonstrated that •OH and eaq- were the predominant for SA degradation. SA degradation was reduced with initial concentration increasing, and the removal was faster with pH increasing in the range of 3.1-10.8. The coexisting matters affected SA degradation through changing reactive species, and the introduction of SO42- and Cl- enhanced SA degradation, while CO32- had a negative impact on SA degradation, and the degradation was insignificantly affected when adding humic acid. Gamma irradiation could remain effective in real water matrixes. In conjunction with LC-MS analysis and DFT calculation, possible degradation pathways for SA were proposed. Gamma irradiation could reduce the toxicity of SA, while several byproducts with more toxic were also formed. Furthermore, gamma/priodate (PI) process was promising to enhance SA degradation and mineralization. k value increased by 1.85 times, and mineralization rate increased from 19.51% to 79.19% when adding PI. This study suggested that ionizing radiation was efficient to eliminate SA in wastewater.


Subject(s)
Water Pollutants, Chemical , Water Purification , Sulfanilamide , Wastewater , Water Pollutants, Chemical/radiation effects , Radiation, Ionizing , Sulfonamides , Water , Oxidation-Reduction
13.
Int J Biol Macromol ; 249: 126084, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37532192

ABSTRACT

Our cascading attempt to develop new potent molecules now involves designing a series of imidazole derivatives and synthesizing two sets of 2,4,5- tri-substituted (4a-4d) and 1,2,4,5-tetra-substituted (6a-6d) imidazole by the principle of Debus-Radziszewski multicomponent synthesis reaction. The structures of the obtained compounds were confirmed by 1H/13C NMR, FT-IR, elemental analysis, purity and the retention time was analyzed by HPLC. Based upon the binding affinity in the molecular docking studies, we have synthesized different imidazole derivatives from which compound 6c have been found to show more anti-proliferative activity by inducing apoptosis at a higher rate than the other compounds corroborating the in-silico prediction. The structure and crystallinity of compound 4d have been confirmed by single XRD analysis. The synthesized molecules were screened for their in vitro anti-cancer properties in triple negative breast cancer cell line (MDA-MB-231), pancreatic cancer cell lines (MIA PaCa-2) and oral squamous cell carcinoma cell line (H357) and results indicated that all the compounds inhibited the cell proliferation in a concentration-dependent manner at different time points. The compounds 4b and 6d were found to be effective against the S. aureus bacterial strain whereas only compound 4d fairly inhibited the fungal strain of T. rubrum with a MIC 12.5 µg/mL. Molecular docking study reveals good interaction of the synthesized compounds with known target MELK involved in oncogenesis having high binding profiles. The lead compound 6c was further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Staphylococcus aureus , Leucine Zippers , Spectroscopy, Fourier Transform Infrared , Drug Screening Assays, Antitumor , Molecular Dynamics Simulation , Cell Proliferation , Antifungal Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Imidazoles/pharmacology , Molecular Structure , Structure-Activity Relationship , Cell Line, Tumor
14.
Pharmaceutics ; 15(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37376197

ABSTRACT

The aim of this study was to examine homopolymeric poly(N-isopropylacrylamide), p(NIPAM), hydrogels cross-linked with ethylene glycol dimethacrylate as carriers for sulfanilamide. Using FTIR, XRD and SEM methods, structural characterization of synthesized hydrogels before and after sulfanilamide incorporation was performed. The residual reactants content was analyzed using the HPLC method. The swelling behavior of p(NIPAM) hydrogels of different crosslinking degrees was monitored in relation to the temperature and pH values of the surrounding medium. The effect of temperature, pH, and crosslinker content on the sulfanilamide release from hydrogels was also examined. The results of the FTIR, XRD, and SEM analysis showed that sulfanilamide is incorporated into the p(NIPAM) hydrogels. The swelling of p(NIPAM) hydrogels depended on the temperature and crosslinker content while pH had no significant effect. The sulfanilamide loading efficiency increased with increasing hydrogel crosslinking degree, ranging from 87.36% to 95.29%. The sulfanilamide release from hydrogels was consistent with the swelling results-the increase of crosslinker content reduced the amount of released sulfanilamide. After 24 h, 73.3-93.5% of incorporated sulfanilamide was released from the hydrogels. Considering the thermosensitivity of hydrogels, volume phase transition temperature close to the physiological temperature, and the satisfactory results achieved for sulfanilamide incorporation and release, it can be concluded that p(NIPAM) based hydrogels are promising carriers for sulfanilamide.

15.
Polymers (Basel) ; 15(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376327

ABSTRACT

The degradation of drugs is a substantial problem since it affects the safety and effectiveness of pharmaceutical products, as well as their influence on the environment. A novel system of three potentiometric cross-sensitive sensors (using the Donnan potential (DP) as an analytical signal) and a reference electrode was developed for the analysis of UV-degraded sulfacetamide drugs. The membranes for DP-sensors were prepared by a casting procedure from a dispersion of perfluorosulfonic acid (PFSA) polymer, containing carbon nanotubes (CNTs), whose surface was preliminarily modified with carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. A correlation between the sorption and transport properties of the hybrid membranes and cross-sensitivity of the DP-sensor to sulfacetamide, its degradation product, and inorganic ions was revealed. The analysis of the UV-degraded sulfacetamide drugs using the multisensory system based on hybrid membranes with optimized properties did not require a pre-separation of the components. The limits of detection of sulfacetamide, sulfanilamide, and sodium were 1.8 × 10-7, 5.8 × 10-7, and 1.8 × 10-7 M. The relative errors of the determination of the components of the UV-degraded sulfacetamide drugs were 2-3% (at 6-8% relative standard deviation). PFSA/CNT hybrid materials provided the stable work of the sensors for at least one year.

16.
J Hazard Mater ; 458: 131939, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37385098

ABSTRACT

The treatment of complex polluted wastewater has become an increasingly critical concern for the various types of hazardous organic compounds, including synthetic dyes and pharmaceuticals. Due to their efficient and eco-friendly advantages, the white-rot fungi (WRF) have been applied to degrade environmental pollutants. This study aimed to investigate the removal ability of WRF (i.e., Trametes versicolor WH21) in the co-contamination system composed of Azure B dye and sulfacetamide (SCT). Our study discovered that the decolorization of Azure B (300 mg/L) by strain WH21 was significantly improved (from 30.5% to 86.5%) by the addition of SCT (30 mg/L), while the degradation of SCT was also increased from 76.4% to 96.2% in the co-contamination system. Transcriptomic and biochemical analyses indicated that the ligninolytic enzyme system was activated by the enhanced enzymatic activities of MnPs and laccases, generating higher concentration of extracellular H2O2 and organic acids in strain WH21 in response to SCT stress. Purified MnP and laccase of strain WH21 were revealed with remarkable degradation effect on both Azure B and SCT. These findings significantly expanded the existing knowledge on the biological treatment of organic pollutants, indicating the strong promise of WRF in the treatment of complex polluted wastewater.


Subject(s)
Anti-Bacterial Agents , Trametes , Anti-Bacterial Agents/metabolism , Sulfanilamide , Wastewater , Hydrogen Peroxide/metabolism , Coloring Agents/chemistry , Organic Chemicals/metabolism , Laccase/metabolism , Biodegradation, Environmental
17.
Environ Sci Pollut Res Int ; 30(27): 70528-70540, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37147545

ABSTRACT

Suaeda biochar (SBC) was prepared by muffle furnace with Suaeda salsa at 600, 700, 800, and 900 ℃. The physical and chemical properties of biochar at different pyrolysis temperatures and the adsorption mechanism of sulfanilamide (SM) were studied by SEM-EDS, BET, FTIR, XRD, and XPS analysis. The adsorption kinetics and adsorption isotherms were fitted. The results showed that the kinetics was in line with the quasi-second-order adsorption model and belonged to chemisorption. The adsorption isotherm conformed to Langmuir adsorption isotherm model and belonged to monolayer adsorption. The adsorption of SM on SBC was spontaneous and exothermic. The adsorption mechanism may be pore filling, hydrogen bonding, and π-π electron donor acceptor (EDA) interaction.


Subject(s)
Chenopodiaceae , Water Pollutants, Chemical , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Thermodynamics , Charcoal/chemistry , Sulfanilamide , Hydrogen-Ion Concentration
18.
Talanta ; 257: 124383, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36863298

ABSTRACT

A possibility of the use of a common monitor calibrator as a portable and inexpensive tool for the fluorometric determination of sulfonamide drugs after their reaction with fluorescamine was examined. The luminescence measurements with a calibrator are based on irradiation of a test sample by the device lamp with a broadband spectrum in the visible and near UV regions and simultaneous registration of the secondary radiation by the device detector. Two types of cuvettes with black light absorbing sides eliminating the reflected self-radiation were tested. The commercially available Eppendorf-type black plastic microtubes ("LightSafe") were suggested as a good option for such measurements. It was shown that a monitor calibrator can be applied for optimization of the determination conditions. By the example of sulfanilamide and sulfamethazine, it was shown that the procedure should be carried out at pH 4-6 and fluorescamine concentration of 200 µmol L-1, and 40 min of the interaction. The limit of detection of sulfanilamide and sulfamethazine using a monitor calibrator is 0.9 µmol L-1 and 0.8 µmol L-1, respectively, which is comparable with their spectrophotometric determination.


Subject(s)
Fluorescamine , Sulfamethazine , Sulfonamides/chemistry , Sulfamethazine/chemistry , Fluorescamine/chemistry , Sulfanilamide/analysis , Sulfanilamide/chemistry
19.
Environ Res ; 218: 114403, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36243053

ABSTRACT

The aim of this study was to investigate the effects of the aquifer media, structure type, and initial concentration ratio of contaminants on the cotransport behavior of microplastics (MPs) and sulfanilamide antibiotics (SAs) through a series of one-dimensional column experiments in groundwater. Under a single suspension system, the relative mass recovery rates of fine sand, medium sand, and coarse sand were 25.65%, 37.50%, and 57.91%, respectively. The breakthrough curve of MPs showed a weak and slow upward trend, indicating that the migration of MPs in aqueous media is mainly blocked by the surface. The migration results of different structure type on SAs (ST, SM, SM2, SMX) in a single suspension system indicated that the deposition rate coefficients (kc) of the four SAs were 1.23 × 10-1, 9.09 × 10-2, 1.11 × 10-1, and 8.87 × 10-2. Under a binary suspension system (MPs:ST = 1:1), the maximum effluent concentration (MEC) of MPs in fine sand, medium sand, and coarse sand increased to 0.52, 0.64, and 0.88, respectively, and the relative mass recovery rates of ST were 22.79%, 23.59%, 20.25%. This results show that the coexistence of MPs and SAs significantly promotes the migration of MPs and inhibits that of SAs. It is mainly because of their carrier action, adsorption sites and additional deposit sites for MPs through SAs pre-deposition on media. When the initial concentration ratio was 2:1, the particles had the highest Zeta potential (-48.3 mV) and the highest potential barrier (3200 kBT), leading to the formation of complex aggregates (MPs-SAs-MPs) owing to the aggregation of colloidal MPs. The increase in the volume and number of MPs-SAs co-aggregates on the surface of the media as the initial concentration of MPs increases, which was mainly due to the disappearance of surface blocking effect and the occurrence of filtering maturation effect.


Subject(s)
Groundwater , Microplastics , Anti-Bacterial Agents , Sulfanilamide , Plastics , Sand , Suspensions , Groundwater/chemistry
20.
Acta Crystallogr C Struct Chem ; 78(Pt 12): 730-742, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36468556

ABSTRACT

In the search for new `sulfa drugs' with therapeutic properties, o-nitrosulfonamides and N-cycloamino-o-sulfanilamides were synthesized and characterized using techniques including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction (SC-XRD). The calculated density functional theory (DFT)-optimized geometry of the molecules showed similar conformations to those obtained by SC-XRD. Molecular docking of N-piperidinyl-o-sulfanilamide and N-indolinyl-o-sulfanilamide supports the notion that o-sulfanilamides are able to bind to human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries 4iwz and 5fl4). Hirshfeld surface analyses and DFT studies of three o-nitrosulfonamides {1-[(2-nitrophenyl)sulfonyl]pyrrolidine, C10H12N2O4S, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, C11H14N2O4S, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, C14H12N2O4S, 3} and three N-cycloamino-o-sulfanilamides [2-(pyrrolidine-1-sulfonyl)aniline, C10H14N2O2S, 4, 2-(piperidine-1-sulfonyl)aniline, C11H16N2O2S, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, C14H14N2O2S, 6] suggested that forces such as hydrogen bonding and π-π interactions hold molecules together and further showed that charge transfer could promote bioactivity and the ability to form biological interactions at the piperidinyl and phenyl moieties.


Subject(s)
Aniline Compounds , Carbonic Anhydrase II , Humans , Sulfanilamide , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Crystallography, X-Ray , Hydrogen Bonding , Piperidines , Pyrrolidines
SELECTION OF CITATIONS
SEARCH DETAIL
...