Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.111
Filter
1.
Sci Rep ; 14(1): 16016, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992004

ABSTRACT

Triple-negative breast cancer (TNBC) represents aggressive phenotype with limited treatment options due to the lack of drug targets. Natural compounds are extensively studied regarding their potential to alter the efficacy of cancer treatment Among them sulforaphane - an isothiocyanate of natural origin, was shown to be a hormetic compound, that may exert divergent effects: cytoprotective or cytotoxic depending on its concentrations. Thus, the aim of this study was to determine the effect of its low, dietary concentrations on the proliferation and migration of the TNBC cells in the in vivo and in vitro 2D and 3D model. Results of the in vivo experiment showed up to 31% tumor growth inhibition after sulforaphane treatment associated with lowered proliferating potential of cancer cells, reduced areas of necrosis, and changed immune cell type infiltration, showing less malignant type of tumor in contrast to the non-treated group. Also, the study revealed that sulforaphane decreased the number of lung metastases. The in vitro study confirmed that SFN inhibited cell migration, but only in cells derived from 3D spheroids, not from 2D in vitro cultures. The results show a specific role of sulforaphane in the case of cells released from the TNBC primary tumor and its environment.


Subject(s)
Cell Movement , Cell Proliferation , Isothiocyanates , Sulfoxides , Triple Negative Breast Neoplasms , Isothiocyanates/pharmacology , Isothiocyanates/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Sulfoxides/pharmacology , Female , Humans , Cell Movement/drug effects , Cell Line, Tumor , Animals , Cell Proliferation/drug effects , Mice , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/administration & dosage , Anticarcinogenic Agents/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Xenograft Model Antitumor Assays
2.
BMC Cancer ; 24(1): 814, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977944

ABSTRACT

BACKGROUND: Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS: RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS: SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS: In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.


Subject(s)
Apoptosis , Cell Proliferation , Rhabdomyosarcoma , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Rhabdomyosarcoma/radiotherapy , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/pathology , Radiation, Ionizing , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Autophagy/drug effects , Autophagy/radiation effects , Combined Modality Therapy
3.
Microorganisms ; 12(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930573

ABSTRACT

Sulforaphane (SFN) is a natural isothiocyanate derived from cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. SFN plays a crucial role in maintaining redox homeostasis by interacting with the active cysteine residues of Keap1, leading to the dissociation and activation of NRF2 in various diseases. In this study, our objective was to investigate the impact of SFN on oxidative stress and pyroptosis in Mycobacterium tuberculosis (Mtb)-infected macrophages. Our findings demonstrated that Mtb infection significantly increased the production of iNOS and ROS, indicating the induction of oxidative stress in macrophages. However, treatment with SFN effectively suppressed the expression of iNOS and COX-2 and reduced MDA and ROS levels, while enhancing GSH content as well as upregulating NRF2, HO-1, and NQO-1 expression in Mtb-infected RAW264.7 macrophages and primary peritoneal macrophages from WT mice. These results suggest that SFN mitigates oxidative stress by activating the NRF2 signaling pathway in Mtb-infected macrophages. Furthermore, excessive ROS production activates the NLRP3 signaling pathway, thereby promoting pyroptosis onset. Further investigations revealed that SFN effectively suppressed the expression of NLRP3, Caspase-1, and GSDMD, IL-1ß, and IL-18 levels, as well as the production of LDH, suggesting that it may exhibit anti-pyroptotic effects through activation of the NRF2 signaling pathway and reductions in ROS production during Mtb infection. Moreover, we observed that SFN also inhibited the expression of NLRP3, ASC, Caspase1, and IL-1ß along with LDH production in Mtb-infected primary peritoneal macrophages from NFR2-/- mice. This indicates that SFN can directly suppress NLRP3 activation and possibly inhibit pyroptosis initiation in an NRF2-independent manner. In summary, our findings demonstrate that SFN exerts its inhibitory effects on oxidative stress by activating the NRF2 signaling pathway in Mtb-infected macrophages, while it may simultaneously exert anti-pyroptotic properties through both NRF2-dependent and independent mechanisms targeting the NLRP3 signaling pathway.

4.
Molecules ; 29(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930960

ABSTRACT

Sulforaphane is a chiral phytochemical with chemopreventive properties. The presence of a stereogenic sulfur atom is responsible for the chirality of the natural isothiocyanate. The key role of sulfur chirality in biological activity is underscored by studies of the efficacy of individual enantiomers as chemoprotective agents. The predominant native (R) enantiomer is active, whereas the (S) antipode is inactive or has little or no biological activity. Here we provide an enantioselective high-performance liquid chromatography (HPLC) protocol for the direct and complete resolution of sulforaphane and its chiral natural homologs with different aliphatic chain lengths between the sulfinyl sulfur and isothiocyanate group, namely iberin, alyssin, and hesperin. The chromatographic separations were carried out on the immobilized-type CHIRALPAK IH-3 chiral stationary phase with amylose tris-[(S)-methylbenzylcarbamate] as a chiral selector. The effects of different mobile phases consisting of pure alcoholic solvents and hydroalcoholic mixtures on enantiomer retention and enantioselectivity were carefully investigated. Simple and environmentally friendly enantioselective conditions for the resolution of all chiral ITCs were found. In particular, pure ethanol and highly aqueous mobile phases gave excellent enantioseparations. The retention factors of the enantiomers were recorded as the water content in the aqueous-organic modifier (methanol, ethanol, or acetonitrile) mobile phases progressively varied. U-shaped retention maps were generated, indicating a dual and competitive hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography retention mechanism on the CHIRALPAK IH-3 chiral stationary phase. Finally, experimental chiroptical studies performed in ethanol solution showed that the (R) enantiomers were eluted before the (S) counterpart under all eluent conditions investigated.


Subject(s)
Amylose , Isothiocyanates , Isothiocyanates/chemistry , Chromatography, High Pressure Liquid/methods , Stereoisomerism , Amylose/chemistry , Amylose/analogs & derivatives , Green Chemistry Technology/methods
5.
Nutrients ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931232

ABSTRACT

Abnormal glucose homeostasis is associated with metabolic syndromes including cardiovascular diseases, hypertension, type 2 diabetes mellitus, and obesity, highlighting the significance of maintaining a balanced glucose level for optimal biological function. This highlights the importance of maintaining normal glucose levels for proper biological functioning. Sulforaphane (SFN), the primary bioactive compound in broccoli from the Cruciferae or Brassicaceae family, has been shown to enhance glucose homeostasis effectively while exhibiting low cytotoxicity. This paper assesses the impact of SFN on glucose homeostasis in vitro, in vivo, and human trials, as well as the molecular mechanisms that drive its regulatory effects. New strategies have been proposed to enhance the bioavailability and targeted delivery of SFN in order to overcome inherent instability. The manuscript also covers the safety evaluations of SFN that have been documented for its production and utilization. Hence, a deeper understanding of the favorable influence and mechanism of SFN on glucose homeostasis, coupled with the fact that SFN is abundant in the human daily diet, may ultimately offer theoretical evidence to support its potential use in the food and pharmaceutical industries.


Subject(s)
Homeostasis , Isothiocyanates , Sulfoxides , Isothiocyanates/pharmacology , Isothiocyanates/administration & dosage , Humans , Homeostasis/drug effects , Animals , Glucose/metabolism , Brassica/chemistry , Blood Glucose/metabolism , Blood Glucose/drug effects , Biological Availability
6.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931429

ABSTRACT

Growing evidence suggests that activators of nuclear factor erythroid-derived 2-like 2 (Nrf2), such as sulforaphane, may represent promising novel pharmacological targets for conditions related to oxidative stress, including depressive disorder. Therefore, we conducted a study to explore the behavioral and biochemical effects of repeated (14 days) sulforaphane (SFN) treatment in the olfactory bulbectomy (OB) animal model of depression. An open field test (OFT), splash test (ST), and spontaneous locomotor activity test (LA) were used to assess changes in depressive-like behavior and the potential antidepressant-like activity of SFN. The OB model induced hyperactivity in mice during the OFT and LA as well as a temporary loss of self-care and motivation in the ST. The repeated administration of SFN (10 mg/kg) effectively reversed these behavioral changes in OB mice across all tests. Additionally, a biochemical analysis revealed that SFN (10 mg/kg) increased the total antioxidant capacity in the frontal cortex and serum of the OB model. Furthermore, SFN (10 mg/kg) significantly enhanced superoxide dismutase activity in the serum of OB mice. Overall, the present study is the first to demonstrate the antidepressant-like effects of repeated SFN (10 mg/kg) treatment in the OB model and indicates that these benefits may be linked to improved oxidative status.

7.
Biomedicines ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927376

ABSTRACT

Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.

8.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928111

ABSTRACT

Age-related macular degeneration (AMD) is strictly linked to chronic oxidative stress, inflammation, loss of epithelial barrier integrity, and often with abnormal new blood vessel development. In this study, the retinal epithelial cell line ARPE-19 was treated with pro-inflammatory transforming growth factor-beta (TGF-ß) to investigate the activity of vitamin D (VD) and sulforaphane (SF) in abating the consequences of oxidative stress and inflammation. The administration of VD and SF lowered reactive oxygen species (ROS) levels, and abated the related expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8 induced by TGF-ß. We evaluated mitochondrial respiration as a source of ROS production, and we discovered that the increased transcription of respiratory elements triggered by TGF-ß was prevented by VD and SF. In this model of inflamed epithelium, the treatment with VD and SF also reduced the secretion of VEGF, a key angiogenic factor, and restored the markers of epithelial integrity. Remarkably, all the observed biological effects were potentiated by the co-stimulation with the two compounds and were not mediated by VD receptor expression but rather by the ERK 1/2 pathway. Altogether, the results of this study reveal the powerful synergistic anti-inflammatory activity of SF and VD and lay the foundation for future clinical assessment of their efficacy in AMD.


Subject(s)
Isothiocyanates , Macular Degeneration , Oxidative Stress , Reactive Oxygen Species , Sulfoxides , Vitamin D , Humans , Macular Degeneration/metabolism , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Sulfoxides/pharmacology , Vitamin D/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Vascular Endothelial Growth Factor A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Transforming Growth Factor beta/metabolism , Biomarkers/metabolism , Interleukin-8/metabolism
9.
Phytomedicine ; 130: 155731, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38824824

ABSTRACT

BACKGROUND: Sulforaphane (SFN) is a dietary isothiocyanate, derived from glucoraphanin, present in cruciferous vegetables belonging to the Brassica genus. It is a biologically active phytochemical that acts as a nuclear factor erythroid 2-related factor 2 (Nrf2) inducer. Thus, it has been reported to have multiple protective functions including anticancer responses and protection against a toxic agent's action. PURPOSE: The present work systematically reviewed and synthesised the protective properties of sulforaphane against a toxic agent. This review reveals the mechanism of the action of SFN in each organ or system. METHODS: The PRISMA guideline was followed in this sequence: researched literature, organised retrieved documents, abstracted relevant information, assessed study quality and bias, synthesised data, and prepared a comprehensive report. Searches were conducted on Science Direct and PubMed using the keywords "Sulforaphane" AND ("protective effects" OR "protection against"). RESULTS: Reports showed that liver and the nervous system are the target organs on which attention was focused, and this might be due to the key role of oxidative stress in liver and neurodegenerative diseases. However, protective activities have also been demonstrated in the lungs, heart, immune system, kidneys, and endocrine system. SFN exerts its protective effects by activating the Nrf2 pathway, which enhances antioxidant defenses and reduces oxidative stress. It also suppresses inflammation by decreasing interleukin production. Moreover, SFN inhibits apoptosis by preventing caspase 3 cleavage and increasing Bcl2 levels. Overall, SFN demonstrates multifaceted mechanisms to counteract the adverse effects of toxic agents. CONCLUSION: SFN has potential clinical applications as a chemoprotective agent. Nevertheless, more studies are necessary to set the safe doses of SFN in humans.


Subject(s)
Isothiocyanates , Sulfoxides , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Humans , Animals , Brassica/chemistry , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Protective Agents/pharmacology
10.
Inflammopharmacology ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922526

ABSTRACT

The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.

11.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892516

ABSTRACT

BACKGROUND: The scientific literature has reported an inverse association between broccoli consumption and the risk of suffering from several types of cancer; however, the results were not entirely consistent across studies. A systematic review and meta-analysis of observational studies were conducted to determine the association between broccoli consumption and cancer risk with the aim of clarifying the beneficial biological effects of broccoli consumption on cancer. METHODS: PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library (CENTRAL), and Epistemonikos databases were searched to identify all published papers that evaluate the impact of broccoli consumption on the risk of cancer. Citation chasing of included studies was conducted as a complementary search strategy. The risk of bias in individual studies was assessed using the Newcastle-Ottawa Scale. A random-effects model meta-analysis was employed to quantitatively synthesize results, with the I2 index used to assess heterogeneity. RESULTS: Twenty-three case-control studies (n = 12,929 cases and 18,363 controls; n = 31,292 individuals) and 12 cohort studies (n = 699,482 individuals) were included in the meta-analysis. The results suggest an inverse association between broccoli consumption and the risk of cancer both in case-control studies (OR: 0.64, 95% CI from 0.58 to 0.70, p < 0.001; Q = 35.97, p = 0.072, I2 = 30.49%-moderate heterogeneity; τ2 = 0.016) and cohort studies (RR: 0.89, 95% CI from 0.82 to 0.96, p = 0.003; Q = 13.51, p = 0.333, I2 = 11.21%-low heterogeneity; τ2 = 0.002). Subgroup analysis suggested a potential benefit of broccoli consumption in site-specific cancers only in case-control studies. CONCLUSIONS: In summary, the findings indicate that individuals suffering from some type of cancer consumed less broccoli, suggesting a protective biological effect of broccoli on cancer. More studies, especially cohort studies, are necessary to clarify the possible beneficial effect of broccoli on several types of cancer.


Subject(s)
Brassica , Neoplasms , Observational Studies as Topic , Humans , Neoplasms/epidemiology , Neoplasms/etiology , Neoplasms/prevention & control , Diet , Risk Factors , Female , Case-Control Studies
12.
Mol Med ; 30(1): 94, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902597

ABSTRACT

Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.


Subject(s)
Anticarcinogenic Agents , Isothiocyanates , Neoplasms , Sulfoxides , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Sulfoxides/pharmacology , Sulfoxides/therapeutic use , Humans , Neoplasms/prevention & control , Neoplasms/drug therapy , Neoplasms/metabolism , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Animals , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism
13.
Front Nutr ; 11: 1386083, 2024.
Article in English | MEDLINE | ID: mdl-38919393

ABSTRACT

Human studies have shown the anticancer effects of dietary isothiocyanates (ITCs), but there are some inconsistencies, and more evidence supports that such anticancer effect is from higher doses of ITCs. The inconsistencies found in epidemiological studies may be due to many factors, including the biphasic dose-response (so called hormetic effect) of ITCs, which was found to be more profound under hypoxia conditions. In this comprehensive review, we aim to shed light on the intriguing synergistic interactions between dietary ITCs, focusing on sulforaphane (SFN) and various anticancer drugs. Our exploration is motivated by the potential of these combinations to enhance cancer management strategies. While the anticancer properties of ITCs have been recognized, our review delves deeper into understanding the mechanisms and emphasizing the significance of the hormetic effect of ITCs, characterized by lower doses stimulating both normal cells and cancer cells, whereas higher doses are toxic to cancer cells and inhibit their growth. We have examined a spectrum of studies unraveling the multifaceted interaction and combinational effects of ITCs with anticancer agents. Our analysis reveals the potential of these synergies to augment therapeutic efficacy, mitigate chemoresistance, and minimize toxic effects, thereby opening avenues for therapeutic innovation. The review will provide insights into the underlying mechanisms of action, for example, by spotlighting the pivotal role of Nrf2 and antioxidant enzymes in prevention. Finally, we glimpse ongoing research endeavors and contemplate future directions in this dynamic field. We believe that our work contributes valuable perspectives on nutrition and cancer and holds promise for developing novel and optimized therapeutic strategies.

14.
Biochem Biophys Res Commun ; 726: 150244, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38905785

ABSTRACT

Sulforaphane (SFaN) is a food-derived compound with several bioactive properties, including atherosclerosis, diabetes, and obesity treatment. However, the mechanisms by which SFaN exerts its various effects are still unclear. To elucidate the mechanisms of the various effects of SFaN, we explored novel SFaN-binding proteins using SFaN beads and identified acyl protein thioesterase 2 (APT2). We also found that SFaN binds to the APT2 via C56 residue and attenuates the palmitoylation of APT2, thereby reducing plasma membrane localization of APT2. This study reveals a novel bioactivity of SFaN as a regulator of APT2 protein palmitoylation.

15.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38841734

ABSTRACT

Chronic inflammation-induced diseases (CID) are the dominant cause of death worldwide, contributing to over half of all global deaths. Sulforaphane (SFN) derived from cruciferous vegetables has been extensively studied for its multiple functional benefits in alleviating CID. This work comprehensively reviewed the biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications of SFN and its potential mechanisms against CID (e.g., cancer, obesity, type 2 diabetes, et al.), and neurological disorders based on a decade of research. SFN exerts its biological functions through the hydrolysis of glucosinolates by gut microbiota, and exhibits rapid metabolism and excretion characteristics via metabolization of mercapturic acid pathway. Microencapsulation is an important way to improve the stability and targeted delivery of SFN. The health benefits of SNF against CID are attributed to the multiple regulatory mechanisms including modulating oxidative stress, inflammation, apoptosis, immune response, and intestinal homeostasis. The clinical applications of SFN and related formulations show promising potential; however, further exploration is required regarding the sources, dosages, toxicity profiles, and stability of SFN. Together, SFN is a natural product with great potential for development and application, which is crucial for the development of functional food and pharmaceutical industries.

16.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38868980

ABSTRACT

Sulforaphane (SFN) has shown diverse effects on human health and diseases. SFN was administered daily to C57BL/6J mice at doses of 1 mg/kg (SFN1) and 3 mg/kg (SFN3) for 8 weeks. Both doses of SFN accelerated body weight increment. The cross-sectional area and diameter of Longissimus dorsi (LD) muscle fibers were enlarged in SFN3 group. Triglyceride (TG) and total cholesterol (TC) levels in LD muscle were decreased in SFN groups. RNA sequencing results revealed that 2455 and 2318 differentially expressed genes (DEGs) were found in SFN1 and SFN3 groups, respectively. Based on GO enrichment analysis, 754 and 911 enriched GO terms in the SFN1 and SFN3 groups, respectively. KEGG enrichment analysis shown that one KEGG pathway was enriched in the SFN1 group, while six KEGG pathways were enriched in the SFN3 group. The expressions of nine selected DEGs validated with qRT-PCR were in line with the RNA sequencing data. Furthermore, SFN treatment influenced lipid and protein metabolism related pathways including AMPK signaling, fatty acid metabolism signaling, cholesterol metabolism signalling, PPAR signaling, peroxisome signaling, TGFß signaling, and mTOR signaling. In summary, SFN elevated muscle fibers size and reduced TG and TC content of in LD muscle by modulating protein and lipid metabolism-related signaling pathways.


Subject(s)
Isothiocyanates , Lipid Metabolism , Mice, Inbred C57BL , Muscle, Skeletal , Signal Transduction , Sulfoxides , Animals , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Signal Transduction/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Male , Lipid Metabolism/drug effects , Mice , Cholesterol/metabolism , Triglycerides/metabolism , Muscle Development/drug effects , Oxidation-Reduction/drug effects , Gene Expression Regulation/drug effects
17.
Front Pharmacol ; 15: 1406653, 2024.
Article in English | MEDLINE | ID: mdl-38835668

ABSTRACT

Background: P. aeruginosa, a significant bacterium, can cause severe illness and resistance to antibiotics. Quorum sensing (QS) systems regulate virulence factors production. Targeting QS could reduce bacteria pathogenicity and prevent antibiotic resistance. Cruciferous vegetables contain sulforaphane, known for its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Aim: We aimed to examine the inhibitory influences of sulforaphane, at a sub-inhibitory concentration (» minimum inhibitory concentration, MIC), on virulence and QS in P. aeruginosa. Materials and methods: The sulforaphane's anti-virulence actions at sub-inhibitory concentrations were explored in vitro and in vivo. A sub-MIC concentration of sulforaphane was combined with anti-pseudomonal drugs, and the results of this combination were assessed. The virtual affinity of sulforaphane for the receptors of QS was studied, and its effect on the expression of QS genes was quantified. Results: Sulforaphane significantly decreased the biofilm formation, motility, ability to withstand oxidative stress, and the synthesis of virulence extracellular enzymes such as proteases, hemolysins, and elastase, as well as other virulence factors like pyocyanin. In addition, sulforaphane lessened the severity of P. aeruginosa infection in mice. Sulforaphane reduced the antipseudomonal antibiotics' MICs when used together, resulting in synergistic effects. The observed anti-virulence impacts were attributed to the ability of sulforaphane to inhibit QS via suppressing the QS genes' expression. Conclusion: Sulforaphane shows promise as a potent anti-virulence and anti-QS agent that can be used alongside conventional antimicrobials to manage severe infections effectively. Furthermore, this study paves the way for further investigation of sulforaphane and similar structures as pharmacophores for anti-QS candidates.

18.
J Psychiatr Res ; 176: 129-139, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38857554

ABSTRACT

Nutrition has been increasingly recognized for its use in mental health. Depression is commonly observed in patients with chronic liver disease (CLD). Building on our recent findings of depression-like behaviors in mice with hepatic ischemia/reperfusion (HI/R) injury, mediated by the gut-liver-brain axis, this study explored the potential influence of dietary sulforaphane glucosinolate (SGS) on these behaviors. Behavioral assessments for depression-like behaviors were conducted 7 days post either sham or HI/R injury surgery. Dietary intake of SGS significantly prevented splenomegaly, systemic inflammation, depression-like behaviors, and downregulation of synaptic proteins in the prefrontal cortex (PFC) of HI/R-injured mice. Through 16S rRNA analysis and untargeted metabolomic analyses, distinct bacterial profiles and metabolites were identified between control + HI/R group and SGS + HI/R group. Correlations were observed between the relative abundance of gut microbiota and both behavioral outcomes and blood metabolites. These findings suggest that SGS intake could mitigate depression-like phenotypes in mice with HI/R injury, potentially through the gut-liver-brain axis. Additionally, SGS, found in crucial vegetables like broccoli, could offer prophylactic nutritional benefits for depression in patients with CLD.

19.
Neurochem Res ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886329

ABSTRACT

Sulforaphane is a natural compound with neuroprotective activity, but its effects on hypothalamus remain unknown. In line with this, astrocytes are critical cells to maintain brain homeostasis, and hypothalamic astrocytes are fundamental for sensing and responding to environmental changes involved in a variety of homeostatic functions. Changes in brain functionality, particularly associated with hypothalamic astrocytes, can contribute to age-related neurochemical alterations and, consequently, neurodegenerative diseases. Thus, here, we investigated the glioprotective effects of sulforaphane on hypothalamic astrocyte cultures and hypothalamic cell suspension obtained from aged Wistar rats (24 months old). Sulforaphane showed anti-inflammatory and antioxidant properties, as well as modulated the mRNA expression of astroglial markers, such as aldehyde dehydrogenase 1 family member L1, aquaporin 4, and vascular endothelial growth factor. In addition, it increased the expression and extracellular levels of trophic factors, such as glia-derived neurotrophic factor and nerve growth factor, as well as the release of brain-derived neurotrophic factor and the mRNA of TrkA, which is a receptor associated with trophic factors. Sulforaphane also modulated the expression of classical pathways associated with glioprotection, including nuclear factor erythroid-derived 2-like 2, heme oxygenase-1, nuclear factor kappa B p65 subunit, and AMP-activated protein kinase. Finally, a cell suspension with neurons and glial cells was used to confirm the predominant effect of sulforaphane in glial cells. In summary, this study indicated the anti-aging and glioprotective activities of sulforaphane in aged astrocytes.

20.
Int J Biol Macromol ; 271(Pt 1): 132692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806085

ABSTRACT

The therapeutic potential of tissue engineering in addressing articular cartilage defects has been a focal point of research for numerous years. Despite its promising outlook, a persistent challenge within this domain is the lack of sufficient functional integration between engineered and natural tissues. This study introduces a novel approach that employs a combination of sulforaphane (SFN) nanoemulsion and tannic acid to enhance cartilage tissue engineering and promote tissue integration in a rat knee cartilage defect model. To substantiate our hypothesis, we conducted a series of in vitro and in vivo experiments. The SFN nanoemulsion was characterized using DLS, zeta potential, and TEM analyses. Subsequently, it was incorporated into a ternary polymer hydrogel composed of chitosan, gelatin, and polyethylene glycol. We evaluated the hydrogel with (H-SFN) and without (H) the SFN nanoemulsion through a comprehensive set of physicochemical, mechanical, and biological analyses. For the in vivo study, nine male Wistar rats were divided into three groups: no implant (Ctrl), H, and H-SFN. After inducing a cartilage defect, the affected area was treated with tannic acid and subsequently implanted with the hydrogels. Four weeks post-implantation, the harvested cartilage underwent histological examination employing H&E, safranin O/fast green, alcian blue, and immunohistochemistry staining techniques. Our results revealed that the SFN nanodroplets had an average diameter of 75 nm and a surface charge of -11.58 mV. Moreover, degradation, swelling rates, hydrophilicity, and elasticity features of the hydrogel incorporating SFN were improved. Histopathological analysis indicated a higher production of GAGs and collagen in the H-SFN group. Furthermore, the H-SFN group exhibited superior cartilage regeneration and tissue integration compared to the Ctrl and H groups. In conclusion, the findings of this study suggest the importance of considering cell protective properties in the fabrication of scaffolds for knee cartilage defects, emphasizing the potential significance of the proposed SFN nanoemulsion and tannic acid approach in advancing the field of cartilage tissue engineering.


Subject(s)
Cartilage, Articular , Chitosan , Emulsions , Gelatin , Hydrogels , Isothiocyanates , Polyethylene Glycols , Sulfoxides , Tannins , Tissue Engineering , Tannins/chemistry , Tannins/pharmacology , Animals , Chitosan/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Gelatin/chemistry , Rats , Cartilage, Articular/drug effects , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Polyethylene Glycols/chemistry , Male , Tissue Engineering/methods , Rats, Wistar , Tissue Scaffolds/chemistry , Nanoparticles/chemistry , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...