Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Phytochem Anal ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740517

ABSTRACT

INTRODUCTION: Sulfur-fumigation of Paeoniae Radix Alba (PRA) could induce the chemical transformation of its bioactive component paeoniflorin into a sulfur-containing derivative paeoniflorin sulfite, and thus alter the quality, bioactivities, pharmacokinetics, and toxicities of PRA. However, how sulfur-fumigated PRA (S-PRA) affects the quality of PRA-containing complex preparations has not been intensively evaluated. OBJECTIVES: We intend to evaluate the influence of S-PRA on the overall quality of three kinds of Si-Wu-Tang (SWT) formulations, i.e., decoction (SWT-D), granule (SWT-G), and mixture (SWT-M). MATERIAL AND METHODS: An UPLC-DAD multi-components quantification method was used to compare the transfer rates of paeoniflorin sulfite and other 10 bioactive components between S-PRA-containing and NS-PRA-containing SWT formulations. An UPLC-QTOF-MS/MS-based target metabolomics approach was applied to explore the differential sulfur-containing derivatives in S-PRA-containing SWT formulations. RESULTS: The transfer rates of paeoniflorin sulfite in three S-PRA-containing SWT formulations were all higher than 100%. Moreover, S-PRA also increased the transfer rate of 5-hydroxymethylfurfural, 1,2,3,4,6-O-pentagalloylglucose, whereas decreased that of paeoniflorin, albiflorin, and ferulic acid in three SWT formulations. Six pinane monoterpene glucoside sulfites originally identified in S-PRA, were also detectable in three S-PRA-containing SWT formulations. In addition, seven phenolic acid sulfites including (3Z)-6-sulfite-ligustilide, (3E)-6-sulfite-ligustilide, 6,8-disulfite-ligustilide, ferulic acid sulfite, neochlorogenic acid sulfite, chlorogenic acid sulfite, and angelicide sulfite (or isomer) were newly identified in these three S-PRA-containing formulations. CONCLUSION: S-PRA could differentially affect the transfer rate of paeoniflorin sulfite and other bioactive components during the preparation of three SWT formulations and subsequently the overall quality thereof.

2.
Front Pharmacol ; 15: 1366556, 2024.
Article in English | MEDLINE | ID: mdl-38746010

ABSTRACT

Codonopsis radix is the dried root of C. pilosula (Franch.) Nannf., C. pilosula Nannf. var. modesta (Nannf.) L. T. Shen, or C. tangshen Oliv., constitutes a botanical medicine with a profound historical lineage. It encompasses an array of bioactive constituents, including polyacetylenes, phenylpropanoids, alkaloids, triterpenoids, and polysaccharides, conferring upon it substantial medicinal and edible values. Consequently, it has garnered widespread attention from numerous scholars. In recent years, driven by advancements in modern traditional Chinese medicine, considerable strides have been taken in exploring resources utilization, traditional processing, quality evaluation and polysaccharide research of Codonopsis radix. However, there is a lack of systematic and comprehensive reporting on these research results. This paper provides a summary of recent advances in Codonopsis research, identifies existing issues in Codonopsis studies, and offers insights into future research directions. The aim is to provide insights and literature support for forthcoming investigations into Codonopsis.

3.
Food Chem ; 448: 139112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569404

ABSTRACT

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Subject(s)
Fumigation , Ginsenosides , Panax , Quality Control , Sulfur , Ginsenosides/chemistry , Ginsenosides/analysis , Panax/chemistry , Sulfur/chemistry , Sulfites/chemistry , Sulfites/analysis , Metals/chemistry , Metals/analysis , Plant Extracts/chemistry
4.
Talanta ; 269: 125461, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38056416

ABSTRACT

Gastrodia elata Bl. is a widely used traditional Chinese medicine known for its medicinal properties. However, during the drying process, G. elata is often fumigated with sulfur to prevent corrosion and improve its appearance. Sulfur-fumigation can result in a reduction in the effective components of the herb and can also be hazardous to human health due to the remaining sulfur dioxide. Sulfur-fumigation of G. elata poses a significant challenge to both end-users and researchers. The detection of p-hydroxybenzyl hydrogen sulfite (p-HS) is a useful tool in determining whether G. elata has been fumigated with sulfur. Unfortunately, the current method for detecting p-HS is costly and requires sophisticated instruments. Therefore, there is a need to develop a more cost-effective and user-friendly method for the detection of p-HS. This study utilized the Capture-SELEX technique to screen high-affinity aptamers for p-HS, which were subsequently characterized by isothermal titration calorimetry (ITC). An aptamer sequence (seq 6) with a high affinity of Kd = 26.5 µM was obtained following 8 rounds of selection against p-HS. With the aptamer serving as the recognition element and gold nanoparticles as the colorimetric indicator, a simple and efficient colorimetric sensor was developed for the specific detection of p-HS. This detection method exhibited a limit of detection of 1 µg/ml, while the p-HS recoveries demonstrated a range of between 88.5 % and 105 % for samples of G. elata obtained in the market. In summary, the aptamer exhibited a high affinity for p-HS, and the sensor developed through the use of a colloidal gold detector based on nucleic acid aptamer can be utilized for rapid detection of sulfur-fumigated G. elata. With these findings, this research paper provides valuable scientific insights and highlights significant potential for future studies in this area.


Subject(s)
Drugs, Chinese Herbal , Gastrodia , Metal Nanoparticles , Humans , Gastrodia/chemistry , Drugs, Chinese Herbal/chemistry , Gold , Sulfur/chemistry
5.
Int J Biol Macromol ; 247: 125843, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37460073

ABSTRACT

Ginseng is widely regarded as a panacea in Oriental medicine mainly due to its immunomodulatory activity. We previously found that sulfur fumigation, a commonly used pesticidal and anti-bacterial processing practice, weakened the immunomodulatory activity of ginseng. However, if and how sulfur fumigation affects the polysaccharides in ginseng, the crucial components contributing to the immunomodulatory function, remain unknown. Here we report that polysaccharides extracted from sulfur-fumigated ginseng (SGP) presented different chemical properties with polysaccharides extracted with non-fumigated ginseng (NGP), particularly increased water extraction yield and decreased branching degree. SGP had weaker immunomodulatory activity than NGP in immunocompromised mice, as evidenced by less improved immunophenotypes involving body weight, immune organ indexes, white blood cells, lymphocyte cell populations and inflammation. The different immunomodulatory activities were accompanied by changes in the interaction between the polysaccharides and gut microbiota, in which SGP stimulated the growth of different bacteria but produced less SCFAs as compared to NGP. Fecal microbiota transplantation experiment suggested that gut microbiota played a central role in causing the weakened immunomodulatory activity in vivo. This study provides definite evidence that sulfur fumigation affects the chemistry and bioactivity of ginseng polysaccharides, thereby contributing to understanding how sulfur fumigation weakens the immunomodulatory activity of ginseng.


Subject(s)
Panax , Mice , Animals , Panax/chemistry , Fumigation , Sulfur/chemistry , Polysaccharides/pharmacology , Plant Extracts
6.
Zhongguo Zhong Yao Za Zhi ; 48(3): 660-671, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872229

ABSTRACT

Lilii Bulbus is a commonly used Chinese herbal medicine with both medicinal and edible values, while the market products usually has the problem of sulfur fumigation. Therefore, the quality and safety of Lilii Bulbus products deserve attention. In this study, ultra-high performance liquid chromatography-time of flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was combined with principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) to analyze the differential components of Lilii Bulbus before and after sulfur fumigation. We identified ten markers generated after sulfur fumigation, summarized their mass fragmentation and transformation patterns, and verified the structures of phenylacrylic acid markers of sulfur fumigation. At the same time, the cytotoxicity of the aqueous extracts of Lilii Bulbus before and after sulfur fumigation was evaluated. The results showed that in the concentration range of 0-800 mg·L~(-1), the aqueous extract of Lilii Bulbus after sulfur fumigation had no significant effect on the viability of human liver LO2 cells, human renal proximal tubular HK-2 cells, and rat adrenal pheochromocytoma PC-12 cells. Moreover, the viability of the cells exposed to the aqueous extract of Lilii Bulbus before and after sulfur fumigation showed no significant difference. This study identified phenylacrylic acid and furostanol saponins as markers of sulfur-fumigated Lilii Bulbus for the first time, and made clear that proper sulfur fumigation of Lilii Bulbus would not produce cytotoxicity, providing a theoretical basis for the rapid identification and quality and safety control of sulfur-fumigated Lilii Bulbus.


Subject(s)
Fumigation , Tandem Mass Spectrometry , Humans , Animals , Rats , Chromatography, High Pressure Liquid , Epithelial Cells , Sulfur
7.
Metabolites ; 13(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36837823

ABSTRACT

Ophiopogonis Radix, also known as "Maidong" (MD) in China, is frequently sulfur-fumigated (SF) in the pretreatment process of MD to improve the appearance and facilitate preservation. However, the process leads to changes in chemical composition, so it is essential to develop an approach to identify the chemical characteristics between nonfumigated and sulfur-fumigated products. This paper provided a practical method based on UPLC-QTOF-MS combined Global Natural Products Social Molecular Networking (GNPS) with multivariate statistical analysis for the characterization and discrimination of MD with different levels of sulfur fumigation, high concentration sulfur fumigation (HS), low concentration sulfur fumigation (LS) and without sulfur fumigation (WS). First, a number of 98 compounds were identified in those MD samples. Additionally, the results of Principal component analysis (PCA) and Orthogonal partial least-squares-discriminant analysis (OPLS-DA) demonstrated that there were significant chemical differences in the chemical composition of MD with different degrees of SF. Finally, fourteen and sixteen chemical markers were identified upon the comparison between HS and WS, LS and WS, respectively. Overall, these results can be able to discriminate MD with different levels of SF as well as establish a solid foundation for further quality control and pharmacological research.

8.
J Pharm Biomed Anal ; 225: 115217, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36592540

ABSTRACT

Atractylodis Macrocephalae Rhizoma (AMR) is one of commonly used medicinal and edible herbs in China. It is often sulfur-fumigated during post-harvest processing. Carbohydrates are important active components of AMR. However, it is unknown whether sulfur-fumigation would induce changes on carbohydrates. Here, carbohydrates including polysaccharides, oligosaccharides and free monosaccharides were comprehensively analyzed to characterize the quality changes of sulfur-fumigated AMR. Determination of both homemade sulfur-fumigated AMR samples and commercial samples from market revealed that sulfur-fumigation did not affect molecular weight distribution of polysaccharides, but altered polysaccharides content and its ratios of constituent monosaccharides, especially glucose (Glc) and fructose (Fru), as well as the contents of oligosaccharides DP2-10 and free monosaccharide Fru. Moreover, the variations enhanced with the increasing of residual SO2 content. The potential transformation mechanisms could be due to the hydrolysis of polysaccharides. The research outcomes could provide a chemical basis for the safety and efficacy evaluations of sulfur-fumigated AMR.


Subject(s)
Drugs, Chinese Herbal , Fumigation , Sulfur/chemistry , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Monosaccharides/analysis
9.
J Ethnopharmacol ; 301: 115773, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36191660

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panacis Quinquefolii Radix (PQR) is often illegally sulfur fumigated to extend shelf life and improve appearance, but existing regulations of detecting SO2 residues do not accurately identify desulfurized sulfur-fumigated PQR (SF-PQR). Although sulfur-containing derivatives (SCDs) have been reported in some sulfur-fumigated herbs, there is a lack of research on the generation mechanisms and toxicity of SCDs. Our previous study reported the nephrotoxicity of SF-PQR, and there is an urgent necessity to illuminate the mechanism of toxicity as well as its association with SCDs. AIM OF THE STUDY: To investigate the transformation pattern of chemical components and SCDs in SF-PQR, and to disclose the linkage between SCDs and SF-PQR nephrotoxicity. MATERIALS AND METHODS: The extracts of PQR (before and after SF) were detected by the UPLC-LTQ-Orbitrap-MS method, and SCDs were screened as quality markers (Q-markers). The composition of sulfur combustion products was examined by ion chromatography to exploit the conversion mechanism of SCDs. After administration of PQR extracts to mice for two weeks, serum was collected for GC-MS-based untargeted metabolomics study to mine for differential metabolites. The upstream genes were traced by network analysis to probe toxicity targets. Molecular docking was used to uncover the interactions between SCDs and the targets. RESULTS: Thirty-three compounds were identified and 11 SCDs of saponins were screened, including four SO3 sulfonation products and five H2SO3 sulfonation products. Metabolomics study showed significant alterations in serum biochemistry of SF-PQR group, with substantial increases in fumarate and 2-heptanone content, and induced disturbances in glycerolipid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis in mice. Network analysis revealed that the key toxicity targets were DECR1, PLA2G1B, and CAT. Molecular docking indicated that SCDs had stable interaction forces with the above three toxicity targets. CONCLUSION: SF-PQR caused kidney damage by affecting glycerolipid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis. Eleven SCDs were potential nephrotoxic substances and Q-markers for identifying SF-PQR. This study is the first to systematically elucidate the mechanism of SF-PQR-related nephrotoxicity, providing a robust basis for the construction of new quality control standards and a global prohibition of sulfur fumigation.


Subject(s)
Drugs, Chinese Herbal , Tryptophan , Mice , Animals , Chromatography, High Pressure Liquid/methods , Molecular Docking Simulation , Fumigation , Sulfur/toxicity , Sulfur/chemistry , Metabolomics , Drugs, Chinese Herbal/chemistry , Tyrosine , Phenylalanine
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970535

ABSTRACT

Lilii Bulbus is a commonly used Chinese herbal medicine with both medicinal and edible values, while the market products usually has the problem of sulfur fumigation. Therefore, the quality and safety of Lilii Bulbus products deserve attention. In this study, ultra-high performance liquid chromatography-time of flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was combined with principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) to analyze the differential components of Lilii Bulbus before and after sulfur fumigation. We identified ten markers generated after sulfur fumigation, summarized their mass fragmentation and transformation patterns, and verified the structures of phenylacrylic acid markers of sulfur fumigation. At the same time, the cytotoxicity of the aqueous extracts of Lilii Bulbus before and after sulfur fumigation was evaluated. The results showed that in the concentration range of 0-800 mg·L~(-1), the aqueous extract of Lilii Bulbus after sulfur fumigation had no significant effect on the viability of human liver LO2 cells, human renal proximal tubular HK-2 cells, and rat adrenal pheochromocytoma PC-12 cells. Moreover, the viability of the cells exposed to the aqueous extract of Lilii Bulbus before and after sulfur fumigation showed no significant difference. This study identified phenylacrylic acid and furostanol saponins as markers of sulfur-fumigated Lilii Bulbus for the first time, and made clear that proper sulfur fumigation of Lilii Bulbus would not produce cytotoxicity, providing a theoretical basis for the rapid identification and quality and safety control of sulfur-fumigated Lilii Bulbus.


Subject(s)
Humans , Animals , Rats , Fumigation , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Epithelial Cells , Sulfur
11.
J Agric Food Chem ; 70(39): 12577-12586, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36130944

ABSTRACT

We previously found that sulfur fumigation, a commonly used controversial method for the post-harvest handling of ginger, induces the generation of a compound in ginger, which was speculated to be a sulfur-containing derivative of 6-shogaol based on its mass data. However, the chemical and biological properties of the compound remain unknown. As a follow-up study, here we report the chemical structure, systemic exposure, and anticancer activity of the compound. Chromatographic separation, nuclear magnetic resonance analysis, and chemical synthesis structurally elucidated the compound as 6-gingesulfonic acid. Pharmacokinetics in rats found that 6-gingesulfonic acid was more slowly absorbed and eliminated, with more prototypes existing in the blood than 6-shogaol. Metabolism profiling indicated that the two compounds produced qualitatively and quantitatively different metabolites. It was further found that 6-gingesulfonic acid exerted significantly weaker antiproliferative activity on tumor cells than 6-shogaol. The data provide chemical and biological evidence that sulfur fumigation may impair the healthcare functions of ginger.


Subject(s)
Zingiber officinale , Animals , Catechols/chemistry , Follow-Up Studies , Fumigation , Zingiber officinale/chemistry , Guaiacol/analogs & derivatives , Rats , Sulfonic Acids , Sulfur
12.
J Pharm Biomed Anal ; 219: 114927, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35816772

ABSTRACT

Si-Jun-Zi decoction (SJZD) with ginseng as the principal medicinal herb is a traditional Chinese Medicine multi-herb prescription that commonly employed to treat colorectal cancer etc. Previous studies showed that nearly half of the commercial ginseng was sulfur-fumigated, one of the postharvest processing methods that commonly causes sulfur-dioxide (SO2) residue and chemical composition transformation in medical herbs. In this study, the effect of sulfur-fumigated ginseng on global quality of SJZD was evaluated by UPLC-QTOF-MS/MS based metabolomics and multiple chromatographic techniques based glycomics strategies. For non-saccharides components, sulfur-fumigated ginseng led to the emergence of sulfur-containing derivatives and alteration of saponins and flavonoids in SJZD. For saccharide components, sulfur-fumigated ginseng decreased the total contents and molecular weights of polysaccharides, changed the monosaccharide composition of polysaccharides, and increased the contents of oligosaccharides and free monosaccharides of SJZD. The alterations of SJZD were aggravated with the sulfur-fumigated content of ginseng. Those phenomena might be attributed to 1) sulfur-fumigation caused the generation of sulfur-containing derivatives in ginseng, which further transferred to SJZD, and 2) sulfur-fumigation caused the residue of SO2 in ginseng, which reduced the pH value and further changed the dissolution of saponins and flavonoids and accelerated the degradation of the polysaccharides to oligosaccharides and/or monosaccharides in SJZD. Furthermore, although storage reduced the SO2 residue in sulfur-fumigated ginseng, it couldn't recover the alterations of chemical profiles in SJZD. In conclusion, sulfur-fumigated ginseng altered the global quality of SJZD, which promoted that extra attention must be paid during the application of herbal formulas that containing sulfur-fumigated herbs.


Subject(s)
Drugs, Chinese Herbal , Panax , Saponins , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Flavonoids , Fumigation , Glycomics , Monosaccharides , Panax/chemistry , Prescriptions , Sulfur/chemistry , Tandem Mass Spectrometry/methods
13.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3781-3787, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850835

ABSTRACT

Since the current identification method for Paeoniae Radix Alba is complex in operation and long time-consuming with high requirements for technicians, the present study employed Heracles NEO ultra-fast gas phase electronic nose(E-nose) technology to identify raw and sulfur-fumigated Paeoniae Radix Alba decoction pieces in order to establish a rapid identification method for sulfur-fumigated Paeoniae Radix Alba. The odors of raw Paeoniae Radix Alba and its sulfur-fumigated products were analyzed by Heracles NEO ultra-fast gas phase E-nose to obtain the odor chromatographic information. The chemometric model was established, and the data were processed by principal component analysis(PCA), discriminant function analysis(DFA), soft independent modeling of class analogy(SIMCA), and partial least squares discriminant analysis(PLS-DA). The differential compounds of raw and sulfur-fumigated samples were qualitatively analyzed based on the Kovats retention index and Arochembase. As revealed by the comparison of gas chromatograms of raw and sulfur-fumigated Paeoniae Radix Alba, the heights of several peaks in the chromatograms before and after sulfur fumigation changed significantly. The peak(No.8) produced by ethylbenzene disappeared completely due to sulfonation reaction in the process of sulfur fumigation, indicating that ethylbenzene may be the key component in the identification of Paeoniae Radix Alba and its sulfur-fumigated products. In PCA, DFA, SIMCA, and PLS-DA models, the two types of samples were separated into two different regions, indicating that the established models can clearly distinguish between raw and sulfur-fumigated Paeoniae Radix Alba. The results showed that Heracles NEO ultra-fast gas phase E-nose technology could realize the rapid identification of raw and sulfur-fumigated Paeoniae Radix Alba, which provides a new method and idea for the rapid identification of sulfur-fumigated Chinese medicine.


Subject(s)
Drugs, Chinese Herbal , Paeonia , Drugs, Chinese Herbal/chemistry , Electronic Nose , Fumigation/methods , Paeonia/chemistry , Plant Extracts , Sulfur/chemistry
14.
J Ethnopharmacol ; 293: 115250, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35367331

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sulfur-fumigation undoubtedly alters the chemical and metabolic profiles, but controversially affects the efficacy and safety of medicinal herbs. AIM OF THE STUDY: To comprehensively evaluate the effects of sulfur-fumigation on the efficacy and safety of medicinal herbs using a meta-analysis approach and further investigate the potential contributory factors. MATERIALS AND METHODS: Literatures were retrieved on PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Chinese VIP Information and Wanfang, and the outcomes involved activities and toxicities were extracted using standard data extraction forms. The effects of sulfur-fumigation on the efficacy and safety of medicinal herbs were evaluated by meta-analysis approaches. RESULTS: A total of sixteen studies were included in this study. Sulfur-fumigation reduced the efficacies of medicinal herbs with immune activity [thymus index (SMD = -1.81; P < 0.00001); spleen index (SMD = -1.11; P < 0.0001)], anti-oxidative activity [MDA (SMD = 2.60; P = 0.04); SOD (SMD = -2.21; P < 0.00001)], analgesic activity [heat tolerate time (SMD = -2.51; P = 0.001); writhing time (SMD = 0.36; P = 0.006)], anti-platelet aggregation activity (SMD = -1.84; P = 0.001), and anti-inflammatory activity [ear swelling degree (SMD = 0.47; P = 0.006)]. The reductions might be ascribed to sulfur-fumigation significantly reduced the contents of active ingredients in medicinal herbs, leading to dramatic decrease in the absorption of these ingredients and their metabolites in vivo. Furthermore, sulfur-fumigation induced the toxicities of medicinal herbs, mainly on hepatotoxicity, which might due to fumigation-induced residues of sulfur dioxide and heavy metal, and generations of sulfur-containing derivatives and toxic metabolites. Besides, administrated with sulfur-fumigated medicinal herbs with high sulfur ratio and/or higher dosage showed more significant toxicity. CONCLUSION: Sulfur-fumigation reduced the efficacy and safety of medicinal herbs, indicating sulfur-fumigation might not a feasible approach to process medicinal herbs. However, with obvious limitations, much more rigorous designed-trials are still needed to confirm the conclusion.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Anti-Inflammatory Agents , Drugs, Chinese Herbal/chemistry , Fumigation/adverse effects , Plants, Medicinal/chemistry , Sulfur/chemistry
15.
Talanta ; 238(Pt 1): 122988, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34857322

ABSTRACT

The illegal adulteration of sulfur dioxide in natural healthcare products may lead to serious health problems, which raise an urgent demand of straightforward approach for detecting sulfur dioxide. In this paper, surface-enhanced Raman scattering (SERS) sensor with sample preparation apparatus for headspace adsorption of SO2 has been developed, which was successfully applied to detect illegal adulteration of sulfur dioxide in traditional Chinese medicine (TCM). Functional membrane substrate of Si@Ag@PEI composite was synthesized to enhance the adsorption and Raman signal of SO2. A 3D-printed headspace extraction device was designed to adsorbed SO2 by Si@Ag@PEI membrane after micro-extraction of TCM samples in 15 min. The content of sulfur dioxide was subsequently quantitatively measured by SERS sensor. The linear range of sensor is between 2.5 and 250 mg/kg with limit of detection of 0.25 mg/kg, which is lower than the strictest standard of Chinese Pharmacopoeia (10 mg/kg). The proposed approach was used to detect the SO2 residue in TCMs including ginseng, Salvia miltiorrhiza, and bitter almonds. The fabricated sensor exhibited satisfied sensitivity and stability, which provide a simple approach for on-site detection of illegal adulteration of sulfur dioxide.


Subject(s)
Medicine, Chinese Traditional , Sulfur Dioxide , Adsorption , Silver , Spectrum Analysis, Raman
16.
Front Nutr ; 9: 1087453, 2022.
Article in English | MEDLINE | ID: mdl-36687729

ABSTRACT

The sulfur dioxide gas (SO2) generated by sulfur burning can improve the appearance quality of food and enhance the storage time. However, excessive sulfur dioxide will pollute the environment and cause deterioration of food quality, and even the high residual levels can increase the risk of cancer. As Gastrodia elata Blume is prone to corruption during processing, sulfur fumigation is often used for preservation. In this study, spectral analysis and Texture Profile Analysis (TPA) were used to investigate the effects of traditional sulfur fumigation processing on the morphology quality, edible quality and structural characteristics of G. elata. The results showed that compared with direct drying, the pH decreased by 0.399 of the sulfur fumigated after steamed treatment G. elata, and the morphology quality, pasting ability and gel edible quality of the starch were significantly improved. In addition, it was suggested that sulfur fumigation after steaming could promote the release of molecular chains from starch granules and thus enhance the cross-linking between molecules, which explained the reason for the improve of starch edible quality. This study can provide technical and theoretical support for improving the quality of starch rich foods, replacing sulfur fumigation and reducing potential environmental hazards.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940673

ABSTRACT

ObjectiveIn order to find a fast odor-based method for the identification of sulfur fumigated Gastrodiae Rhizoma, an ultra-fast gas phase electronic nose technology was used to identify the odors of different degrees of sulfur fumigated Gastrodiae Rhizoma decoction pieces. MethodHeracles NEO ultra-fast gas phase electronic nose was employed to collect gas chromatograms of unsulfured and sulfured with different degrees of Gastrodiae Rhizoma decoction pieces, gas chromatograms were performed under programmed temperature (initial temperature of 40 ℃, 0.2 ℃·s-1 to 60 ℃, and then 4 ℃·s-1 to 250 ℃), the sample volume was 5 mL, the incubation temperature was 65 ℃ and incubation time was 35 min. Kovats retention index and the AroChemBase database were used for qualitative analysis, and stoichiometric analysis was performed on this basis. Principal component analysis (PCA), discriminant factor analysis (DFA) and partial least squares-discriminant analysis (PLS-DA) models were established to identify the Gastrodiae Rhizoma decoction pieces with different degrees of sulfur fumigation. ResultAccording to the comparative analysis of AroChemBase database, there were significant differences in the odor characteristics of sulfur fumigated and non-sulfur fumigated Gastrodiae Rhizoma, cyclopentane, acetone and heptane might be the odor components to distinguish the degree of sulfur fumigation in Gastrodiae Rhizoma decoction pieces. The identification index of PCA model was 81, the accumulative discriminant index of the discriminating factors was 92.09% in DFA model, the supervisory model interpretation rate of PLS-DA model was 0.963 and the predictive ability parameter was 0.956, indicating that PCA, DFA and PLS-DA models could well distinguish Gastrodiae Rhizoma decoction pieces with different sulfur fumigation degrees. ConclusionHeracles NEO ultra-fast gas phase electronic nose can be used as a rapid method to identify and distinguish Gastrodiae Rhizoma decoction pieces with different levels of sulfur fumigation. Meanwhile, it can provide a rapid, simple and green method and technology for identification of traditional Chinese medicine decoction pieces by sulfur fumigation.

18.
Front Plant Sci ; 12: 778956, 2021.
Article in English | MEDLINE | ID: mdl-34868181

ABSTRACT

Sulfur (S) fumigation is a commonly used sterilization method in horticultural facilities against fungal diseases. S fumigation damaged cucumber leaves, although the response mechanism is unclear. This study analyzes the growth, transcriptome, and metabolomic profiles of young and mature leaves, ovaries, and commercial cucumber fruits to decipher the mechanism of cucumber stress response under S fumigation. S fumigation significantly changed the photosynthetic efficiency and reactive oxygen species (ROS) in leaves, but not fruit development, fruit mass, and peel color. Transcriptome analysis indicated that S fumigation strongly regulated stress defense genes. The weighted gene co-expression network analysis revealed that S fumigation regulated ASPG1, AMC1 defense genes, LECRK3, and PERK1 protein kinase. The abscisic acid (ABA)-mediated model of regulation under S fumigation was constructed. Metabolome analysis showed that S fumigation significantly upregulated or downregulated the contents of amino acids, organic acids, sugars, glycosides, and lipids (VIP > 1 and P-value < 0.05). The opposite Pearson's correlations of these differential metabolites implied that cucumber had different metabolic patterns in short-term and long-term S fumigation. Besides, the elevated levels of proline and triglyceride indicated that stress-responsive mechanisms existed in S-fumigated cucumber. Moreover, the comprehensive analysis indicated that S fumigation elevated secondary S-containing metabolites but decreased sulfate absorption and transportation in cucumber. Overall, our results provided a comprehensive assessment of S fumigation on cucumber, which laid the theoretical foundation for S fumigation in protected cultivation.

19.
Front Pharmacol ; 12: 799504, 2021.
Article in English | MEDLINE | ID: mdl-35145404

ABSTRACT

Sulfur Angelicae Dahuricae Radix (Baizhi) is a common medicinal herb in Asian countries. A practical protocol combining metabolomics, pharmacology, and cytotoxicity was developed to comprehensively evaluate the influence of sulfur-fumigation on the quality of Baizhi. Furocoumarins could be transformed into sulfur-containing compounds during the sulfuring process, among which 1 and 3 were purified with relatively high abundance and identified as 3,4-dihydrobyakangelicin-4-sulfonic acid and (4R,12S)-3,4-dihydrooxypeucedanin hydrate-4-sulfonic acid (OXH-S), respectively. OXH-S was found to be an addition product of sulfite and oxypeucedanin hydrate (OXH-N). Then, the cytotoxicity and anti-inflammatory activity of OXH-N, OXH-S, and water extracts of sulfured (extraction-S), and unsulfured Baizhi (extraction-N) were evaluated. OXH-S and extraction-S were less toxic than OXH-N and extraction-N, respectively. A comparison of OXH-N with OXH-S and extraction-N with extraction-S showed no significant differences in anti-inflammatory activity. These results suggest that sulfur fumigation can reduce toxicity and does not influence the anti-inflammatory activity of Baizhi, even after chemical composition changes. The proposed protocol based on marker screening, pharmacology, and safety evaluation provides a scientific basis for the standardization and regulation of sulfured Baizhi and other medical materials.

20.
Front Plant Sci ; 11: 578086, 2020.
Article in English | MEDLINE | ID: mdl-33042192

ABSTRACT

Trichosanthis Radix (TR) is one of the most severely sulfur-fumigated herbs in the market, whose transformation mechanism of chemical compositions and sulfur-fumigation markers of TR have not been clarified. To excavate characteristic sulfur-fumigation markers of TR samples, this study brings up a practical protocol using both ultra-performance liquid chromatography/quadrupole time-of-flight-mass spectrum (UPLC-ESI-QTOF-MS/MS)-based non-targeted metabolomics and ultra-performance liquid chromatography/electrospray ionization/quadrupole multiple-stage linear ion-trap mass spectrum (UPLC-ESI-QTRAP-MS/MS)-based widely targeted metabolomics. The results of study demonstrated that five characteristic markers are sulfur-containing components, which were identified as p-Hydroxybenzyl hydrogen sulfite, cucurbitacin D sulfite I, cucurbitacin D sulfite II, cucurbitacin B sulfite I, and cucurbitacin B sulfite II, respectively. Additionally, cucurbitacin B and D were also filtered and identified as the characteristic sulfur-fumigation markers. Meanwhile, the different sulfur-fumigation extent of TR samples was tested by chemical transformations analysis and sulfur dioxide residues test. Further, 58.16% (139 of 239) of the differential metabolites content significantly reduced in sulfur-fumigated TR samples. Besides, 20 kinds of non-sulfur marker metabolites were tested to evaluate the quality of TR samples before and after sulfur fumigation, predominantly including phenolic acids, amino acids, lipids and nucleotides. Taking TR as an example, this work provides a comprehensive practical protocol for the quality supervision of sulfur-fumigation herbs.

SELECTION OF CITATIONS
SEARCH DETAIL
...