Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Biomater Adv ; 163: 213934, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38954877

ABSTRACT

Sample partitioning is a crucial step towards digitization of biological assays on polymer microfluidic platforms. However, effective liquid filling into microwells and long-term hydrophilicity remain a challenge in polymeric microfluidic devices, impeding the applicability in diagnostic and cell culture studies. To overcome this, a method to produce permanent superhydrophilic 3-dimensional microwells using cyclic olefin copolymer (COC) microfluidic chips is presented. The COC substrate is oxidized using UV treatment followed by ultrasonic spray coating of polyvinyl alcohol solution, offering uniform and long-term coating of high-aspect ratio microfeatures. The coated COC surfaces are UV-cured before bonding with a hydrophobic pressure-sensitive adhesive to drive selective filling into the wells. The surface hydrophilicity achieved using this method remains unchanged (water contact angle of 9°) for up to 6 months and the modified surface is characterized for physical (contact angle & surface energy, morphology, integrity of microfeatures and roughness), chemical composition (FTIR, Raman spectroscopy) and coating stability (pH, temperature, time). To establish the feasibility of the modified surface in biological applications, PVA-coated COC microfluidic chips are tested for DNA sensing (digital LAMP detection of CMV), and biocompatibility through protein adsorption and cell culture studies (cell adhesion, viability, and metabolic activity). Kidney and breast cells remained viable for the duration of testing (7 days) on this modified surface, and the coating did not affect the protein content, morphology or quality of the cultured cells. The ultrasonic spray coated system, coating with 0.25 % PVA for 15 cycles with 0.12 A current after UV oxidation, increased the surface energy of the COC (naturally hydrophobic) from 22.04 to 112.89 mJ/m2 and improved the filling efficiency from 40 % (native untreated COC) to 94 % in the microwells without interfering with the biocompatibility of the surface, proving to be an efficient, high-throughput and scalable method of microfluidic surface treatment for diagnostic and cell growth applications.

2.
ChemSusChem ; : e202401224, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997230

ABSTRACT

Interfacial solar evaporation (ISE) holds considerable promise to solve fresh water shortage, but it is challenging to achieve high evaporation rate (Reva) and fresh water yield in close system. Here, we report design and preparation of MOF-based solar evaporators with hierarchical microporous/nanobridged/nanogranular structures for rapid ISE and fresh water collection in close system. The evaporators are fabricated by growing silicone nanofilaments with variable length as nanobridges on a microporous silicone sponge followed by grafting with polydopamine nanoparticles and Cu-MOF nanocrystals. Integration of the unique structure and excellent photothermal composites endows the evaporators with high Reva of 3.5-20 wt% brines (3.60-2.90 kg m-2 h-1 in open system and 2.38-1.44 kg m-2 h-1 in close system) under simulated 1 sun, high Reva under natural sunlight, excellent salt resistance and high fresh water yield, which surpass most state-of-the-art evaporators. Moreover, when combined with a superhydrophilic cover, the evaporators show much higher average Reva of real seawater, remarkable fresh water yield and excellent long-term stability over one month continuous ISE under natural sunlight. The findings here will promote the development of advanced evaporators via microstructure engineering and their real-world ISE applications.

3.
Int J Biol Macromol ; : 134003, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032900

ABSTRACT

Flexible hybrid hydrogels (GO/AC/CNFn) with a 3D porous network structure and superhydrophilic property are synthesized by cross-linking and self-assembling graphene oxide (GO) and activated carbon (AC) with cellulose nanofiber (CNF) during microwave hydrothermal process. In this ternary composite hydrogel, CNF molecular chains bridge GO sheets to build the 3D skeleton and anchor AC particles within GO nanosheets, forming ordered architecture of GO/AC/CNFn hydrogel that simultaneously possesses high flexibility and excellent mechanical integrity. When using this hydrogel as additive-free electrode, the presence of AC provides developed porous structure and density to promote high volumetric capacitance, while the heteroatom nitrogen groups tune the surface property of the composite with increased electrical conductivity. Benefited from the optimized structure, GO/AC/CNF1 electrode delivers an ultra-high mass specific capacitance of 627 F/g and volume specific capacitance of 618 F/cm3 at 0.5 A/g in three-electrode system in 1 M H2SO4 electrolyte, which is kinetically demonstrated to be essentially originated from the capacitive contributions. The energy density reaches 32.2 Wh/kg at a power density of 150 W/kg for the fabricated flexible solid-state symmetric supercapacitor. Moreover, the obtained flexible device could sensitively response at varied physiological signals, shedding fresh lights on their potential applications in signal sensors and portable electronics.

4.
ACS Nano ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033415

ABSTRACT

For highly active electron transfer and ion diffusion, controlling the surface wettability of electrically and thermally conductive 3D graphene foams (3D GFs) is required. Here, we present ultrasimple and rapid superwettability switching of 3D GFs in a reversible and reproducible manner, mediated by solvent-exclusive microwave arcs. As the 3D GFs are prepared with vapors of nonpolar acetone or polar water exclusively, short microwave radiation (≤10 s) leads to plasma hotspot-mediated production of methyl and hydroxyl radicals, respectively. Upon immediate radical chemisorption, the 3D surfaces become either superhydrophobic (water contact angle = ∼170°) or superhydrophilic (∼0°), and interestingly, the wettability transition can be repeated many times due to the facile exchange between previously chemisorbed and newly introduced radicals via the formation of methanol-like intermediates. When 3D GFs of different surficial polarities are incorporated into electric double-layer capacitors with nonpolar ionic liquids or polar aqueous electrolytes, the polarity matching between graphene surfaces and electrolytes results in ≥548.0 times higher capacitance compared to its mismatching at ≥0.5 A g-1, demonstrating the significance of wettability-controlled 3D GFs.

5.
Sci Rep ; 14(1): 15268, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961084

ABSTRACT

This paper reports the fabrication, characterization, and environmental impact analysis of a super-oleophobic (under water) and super-hydrophilic mesh membrane for oily water treatment. In order to prepare mesh membrane, Titania nanoparticles (NPs) were spray coated on mesh stainless steel followed by calcination at 500 °C. After that, the Titania-coated mesh membrane was characterized using contact angle goniometry (CA), XRD, FE-SEM, EDX and elemental mapping. The FE-SEM, EDX, elemental mapping and XRD results confirmed that the Titania NPs were successfully coated on the surface of mesh membrane. CA results demonstrated that the prepared mesh membrane is super-hydrophilic and super-oleo phobic under water conditions, making it suitable for oil/water separation. Subsequently, life cycle assessment (LCA) was performed to determine the environmental impacts of Titania NPs-coated mesh membrane fabrication process. LCA results indicate that electricity and nitrogen contributed the most toward the eighteen environmental impact categories considered for this study.

6.
Small ; : e2403260, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39032136

ABSTRACT

Conventional fog collection efficiency is subject to the inherent inefficiencies of its three constituent steps: fog capture, coalescence, and transportation. This study presents a liquid bridge synergistic fog collection system (LSFCS) by synergistically utilizing a liquid bridge and interconnected porous superhydrophilic structures (IPHS). The results indicate that the introduction of liquid bridge not only greatly accelerates water droplet transportation, but also facilitates the IPHS in maintaining rough structures that realize stable and efficient fog capture. During fog collection, the lower section of the IPHS is covered by a water layer, however due to the effect of the liquid bridge, the upper section protrudes out, while covered by a connective thin water film that does not obscure the microstructures of the upper section. Under these conditions, a one-step fog collection mode is realized. Once captured by the IPHS, fog droplets immediately coalesce with the water film, and are simultaneously transported into a container under the effect of the liquid bridge. The LSFCS achieves a collection efficiency of 6.5 kg m-2 h-1, 2.3 times that of a system without a liquid bridge. This study offers insight on improving fog collection efficiency, and holds promise for condensation water collection or droplet manipulation.

7.
ACS Appl Bio Mater ; 7(7): 4510-4518, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38950150

ABSTRACT

Fungal proliferation can lead to adverse effects for human health, due to the production of pathogenic and allergenic toxins and also through the creation of fungal biofilms on sensitive surfaces (i.e., medical equipment). On top of that, food spoilage from fungal activity is a major issue, with food losses exceeding 30% annually. In this study, the effect of the surface micro- and nanotopography, material (aluminum, Al, and poly(methyl methacrylate), PMMA), and wettability against Aspergillus awamori is investigated. The fungal activity is monitored using dynamic conditions by immersing the surfaces inside fungal spore-containing suspensions and measuring the fungal biomass growth, while the surfaces with the optimum antifungal properties are also evaluated by placing them near spore suspensions of A. awamori on agar plates. Al- and PMMA-based superhydrophobic surfaces demonstrate a passive-like antifungal profile, and the fungal growth is significantly reduced (1.6-2.2 times lower biomass). On the other hand, superhydrophilic PMMA surfaces enhance fungal proliferation, resulting in a 2.6 times higher fungal total dry weight. In addition, superhydrophobic surfaces of both materials exhibit antifouling and antiadhesive properties, whereas both superhydrophobic surfaces also create an "inhibition" zone against the growth of A. awamori when tested on agar plates.


Subject(s)
Aspergillus , Biocompatible Materials , Materials Testing , Particle Size , Surface Properties , Wettability , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Cell Proliferation/drug effects
8.
Int J Biol Macromol ; 269(Pt 2): 132175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729497

ABSTRACT

Superhydrophilic/underwater superoleophobic materials for the separation of oil-water emulsions by filtration have received much attention in order to solve the pollution problem of oil-water emulsion. In this paper, a fence-like structure on the surface of CNF/KGM (Konjac Glucomannan) materials by a simple method using CNF instead of metal nanowires was successfully developed based on the hydrogen bonding of KGM and CNF. The resulted organic CNF/KGM materials surface has outstanding superhydrophilic (WCA = 0°) in air and superoleophobicity (OCA≥151°) in water, which could separate oil-water mixtures with high separation efficiency above 99.14 % under the pressure of the emulsion itself. The material shows good mechanical properties because of the addition of CNF and has outstanding anti-fouling property and reusability. More importantly, the material can be completely biodegraded after buried in soil for 4 weeks since both of KGM and CNF are organic substances. Therefore, it may have a broad application prospect in the separation of oil-water emulsion because of its outstanding separation properties, simply preparation method and biodegradability.


Subject(s)
Cellulose , Emulsions , Hydrophobic and Hydrophilic Interactions , Nanofibers , Oils , Water , Emulsions/chemistry , Nanofibers/chemistry , Oils/chemistry , Water/chemistry , Cellulose/chemistry , Surface Properties , Biodegradation, Environmental , Mannans/chemistry
9.
Acta Biomater ; 180: 358-371, 2024 05.
Article in English | MEDLINE | ID: mdl-38604464

ABSTRACT

Glaucoma valves (GVs) play an essential role in treating glaucoma. However, fibrosis after implantation has limited their long-term success in clinical applications. In this study, we aimed to develop a comprehensive surface-engineering strategy to improve the biocompatibility of GVs by constructing a microenvironment-regulated and dual-hydrophilic antifouling coating on a GV material (silicone rubber, SR). The coating was based on a superhydrophilic polydopamine (SPD) coating with good short-range superhydrophilicity and antifouling abilities. In addition, SPD coatings contain many phenolic hydroxyl groups that can effectively resist oxidative stress and the inflammatory microenvironment. Furthermore, based on its in situ photocatalytic free-radical polymerization properties, the SPD coating polymerized poly 2-methylacryloxyethylphosphocholine, providing an additional long-range hydrophilic and antifouling effect. The in vitro test results showed that the microenvironment-regulated and dual-hydrophilic coatings had anti-protein contamination, anti-oxidation, anti-inflammation, and anti-fiber proliferation capabilities. The in vivo test results indicated that this coating substantially reduced the fiber encapsulation formation of the SR material by inhibiting inflammation and fibrosis. This design strategy for dual hydrophilic coatings with microenvironmental regulation can provide a valuable reference for the surface engineering design of novel medical implantable devices. STATEMENT OF SIGNIFICANCE: Superhydrophilic polydopamine (SPD) coatings were prepared on silicone rubber (SR) by a two-electron oxidation method. Introduction of pMPC to SPD surface using photocatalytic radical polymerization to obtain a dual-hydrophilic coating. The dual-hydrophilic coating effectively modulates the oxidative and inflammatory microenvironment. This coating significantly reduced protein contamination and adhesion of inflammatory cells and fibroblasts in vitro. The coating-modified SR inhibits inflammatory and fibrosis responses in vivo, promising to serve the glaucoma valves.


Subject(s)
Coated Materials, Biocompatible , Glaucoma Drainage Implants , Hydrophobic and Hydrophilic Interactions , Polymers , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Animals , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Indoles/pharmacology , Surface Properties , Humans , Glaucoma/pathology
10.
Food Chem ; 450: 139341, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631206

ABSTRACT

The escalating use of pesticides on fruits and vegetables has raised concerns about potential health risks. Therefore, we developed a superhydrophilic resin/graphene oxide (SR/GO) with rich adsorption interactions using an eco-friendly synthetic approach. SR/GO demonstrated excellent hydrophilicity, ensuring optimal contact with aqueous sample matrices. The multiple adsorption interactions, including π-π conjugation, hydrogen bonding, and electrostatic adsorption, facilitated multi-pesticide residue co-extraction. The synthesized SR/GO was applied to a miniaturized centrifugation-accelerated pipette-tip extraction method, coupled with high-performance liquid chromatography. The optimized method exhibited low consumption (15.0 mg adsorbent), and high efficiency, with low detection limits (1.4-2.9 ng g-1) and high recoveries (75.3-113.0%). Water-compatible SR/GO, along with a miniaturized extraction process, showcases a potent analytical approach for pesticide residue analysis in fruits and vegetables. The significance of this method lies in its ability to ensure agricultural and food safety by using a low-cost and efficient multi-pesticide residue analytical strategy.


Subject(s)
Fruit , Vegetables , Hydrophobic and Hydrophilic Interactions , Graphite/chemistry , Pesticide Residues/chemistry , Fruit/chemistry , Vegetables/chemistry , Pyrus/chemistry , Citrullus/chemistry , Solanum lycopersicum/chemistry , Malus/chemistry , Cucurbita/chemistry , Chromatography, High Pressure Liquid
11.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38641433

ABSTRACT

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Subject(s)
Catheters , Coated Materials, Biocompatible , Heparin , Polyphenols , Tannins , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Humans , Catheters/microbiology , Polyphenols/chemistry , Polyphenols/pharmacology , Heparin/chemistry , Heparin/pharmacology , Tannins/chemistry , Tannins/pharmacology , Silanes/chemistry , Silanes/pharmacology , Anticoagulants/chemistry , Anticoagulants/pharmacology , Propylamines/chemistry , Amines/chemistry , Amines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polylysine/chemistry , Polylysine/pharmacology , Surface Properties , Hydrophobic and Hydrophilic Interactions , Human Umbilical Vein Endothelial Cells/drug effects , Silicone Elastomers/chemistry , Adsorption , Escherichia coli/drug effects
12.
ACS Appl Mater Interfaces ; 16(13): 16271-16289, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38514254

ABSTRACT

Significant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support. In this study, a defect-free hydrolytically stable zirconium-based MOF separating layer was formed through a two-step method: first, by in situ growth of UiO-66-NH2 MOF into the voids of polydopamine (PDA)-functionalized CM during the solvothermal process, and then by facilitating the self-assembly of UiO-66-NH2 with PDA using a pressurized dead-end assembly. A stable MOF separating layer was attained by enriching the ceramic support with amines and hydroxyl groups using PDA, which assisted in the assembly and stabilization of UiO-66-NH2. The PDA-s-UiO-66-NH2-CM membrane displayed air superhydrophilicity and underwater superoleophobicity, demonstrating its oil resistance and high antifouling behavior. The PDA-s-UiO-66-NH2-CM membrane has shown exceptionally high permeability and separation capacity for challenging oil-in-water emulsions. This is attributed to numerous nanochannels from the membrane and its high resistance to oil adhesion. The membranes showed excellent stability over 15 continuous test cycles, which indicates that the developed MOFs separating layers have a low tendency to be clogged by oil droplets during separation. Machine learning-based Gaussian process regression (GPR) models as nonparametric kernel-based probabilistic models were employed to predict the performance efficiency of the PDA-s-UiO-66-NH2-CM membrane in oil-in-water separation. The outcomes were compared with the support vector machine (SVM) and decision tree (DT) algorithm. This efficiency includes various metrics related to its separation accuracy, and the models were developed through feature engineering to identify and utilize the most significant factors affecting the membrane's performance. The results proved the reliability of GPR optimization with the highest prediction accuracy in the validation phase. The average percentage increase of the GPR model compared to the SVM and DT model was 6.11 and 42.94%, respectively.

13.
Discov Nano ; 19(1): 58, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532183

ABSTRACT

This study presents a technique for processing transparent glass and resin substrates using a low-cost laser marker to create a micro-nano-structured surface with exceptional anti-fog properties. The approach involved depositing an aluminum (Al) film on the transparent substrates as an absorbing layer, followed by rapid laser marker ablation. This ablation process effectively removed the majority of the Al film, resulting in the formation of hierarchical hillock-hollow micro-structures and the dispersion of Al-based nano-particles throughout the surface. The resulting structure on resin glasses demonstrated anti-fog performance even after 629 days storage in the laboratory, which marked the longest antifog record. It exhibited impressive antifog property without visible degradation for the first 9 months, which though degraded substantially afterwards. Furthermore, the micro-nano structure played a key role in reducing the contact angle of the surface. The contact angle experienced a significant reduction from a value of 64° for the control resin to 6.9° for the treated resin, while it was reduced from 44° for the control glass to 0° for the treated glass, indicating superhydrophilicity. This 0° superhydrophilic state persisted for a period of 25 days.

14.
Carbohydr Polym ; 330: 121774, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368091

ABSTRACT

Aerogels are of a popular choice for oil-water separation and water purification due to their attractive properties, such as lightweight, large surface area, and high porosity. Developing robust aerogels with multifunctional characteristics is highly desirable but remains challenging nowadays. Herein, we develop a facile one-pot condensation strategy for the fabrication of superhydrophilic-oleophobic (SHI-OP) composite aerogels using cellulose nanofibers (CNF), 3-glycidy-loxypropyl trimethoxysilane (GPTMS), polyethyleneimine (PEI) and fluorine-contained compound (FS-60). The resulted aerogels exhibit a directional lamellar structure with interconnected macropores, super-lightweight with high porosity of 98.30 % and low density of 0.0256 g·cm-3. Also, the aerogels are mechanically durable against repeated compression. Meanwhile, the amphibious SHI-OP feature of the composite aerogels in both air and water states enables them to not only absorb trace amount of water from contaminated oils, but also separate oil-water mixtures with separation efficiency of over 99 % and high permeation flux of over 9060 L/m2·h. Moreover, the aerogels also show excellent dye adsorption capability and reusability toward anionic dyes with a maximum adsorption capacity of 1245.68 mg/g. Such robust and multifunctional aerogels with special surface wettability provide good opportunity for liquid purification and dye-containing wastewater treatment.

15.
World J Microbiol Biotechnol ; 40(3): 98, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353843

ABSTRACT

Microbiologically-influenced corrosion (MIC) is a common operational hazard to many industrial processes. The focus of this review lies on microbial corrosion in the maritime industry. Microbial metal attachment and colonization are the critical steps in MIC initiation. We have outlined the crucial factors influencing corrosion caused by microorganism sulfate-reducing bacteria (SRB), where its adherence on the metal surface leads to Direct Electron Transfer (DET)-MIC. This review thus aims to summarize the recent progress and the lacunae in mitigation of MIC. We further highlight the susceptibility of stainless steel grades to SRB pitting corrosion and have included recent developments in understanding the quorum sensing mechanisms in SRB, which governs the proliferation process of the microbial community. There is a paucity of literature on the utilization of anti-quorum sensing molecules against SRB, indicating that the area of study is in its nascent stage of development. Furthermore, microbial adherence to metal is significantly impacted by surface chemistry and topography. Thus, we have reviewed the application of super wettable surfaces such as superhydrophobic, superhydrophilic, and slippery liquid-infused porous surfaces as "anti-corrosion coatings" in preventing adhesion of SRB, providing a potential avenue for the development of practical and feasible solutions in the prevention of MIC. The emerging field of super wettable surfaces holds significant potential for advancing efficient and practical MIC prevention techniques.


Subject(s)
Desulfovibrio , Microbiota , Corrosion , Electron Transport , Porosity
16.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251115

ABSTRACT

Super-hydrophilic and oleophobic functional materials can prevent pollution or adsorption by repelling oil, and have good circulation. However, traditional strategies for preparing these functional materials either use expensive fabrication machines or contain possibly toxic organic polymers, which may prohibit the practical application. The research of multifunctional ZnO microstructures or nanoarrays thin films with super-hydrophilic, antifouling, and antibacterial properties has not been reported yet. Moreover, the exploration of underwater oleophobic and self-cleaning antifouling properties in ZnO micro/nanostructures is still in its infancy. Here, we prepared ZnO microstructured films on fluorine-doped tin oxide substrates (F-ZMF) for the development of advanced self-cleaning type super-hydrophilic and oleophobic materials. With the increase of the accelerators, the average size of the F-ZMF microstructures decreased. The F-ZMF shows excellent self-cleaning performance and hydrophilic (water contact angle ≤ 10°) and oleophobic characteristics in the underwater antifouling experiment. Under a dark condition, F-ZMF-4 showed good antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with inhibition rates of 99.1% and 99.9%, respectively. This study broadens the application scope of ZnO-based material and provides a novel prospect for the development of self-cleaning super-hydrophilic and oleophobic materials.

17.
Chem Asian J ; 19(3): e202300962, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214502

ABSTRACT

Superhydrophilic/oleophobic materials are considered to be the best materials for achieving oil-water separation, but their preparation is difficult and the existing methods are not universal. In this paper, a two-step modification strategy was used to prepare superhydrophilic/oleophobic sponges by adjusting the polar and nonpolar components of the materials using mussel-inspired chemistry. While remaining superhydrophilic, the modified sponge surface has a maximum contact angle of 135° with different oils in air. The modified sponge exhibited superoleophobicity in water, and the contact angle of oil could reach more than 150°. In addition, the modified sponges were also reusable, chemically stable, and mechanically durable. Its oil-water separation flux was up to 24900 Lm-2 h-1 bar-1 , and the separation efficiency was above 97 %. We believe that this method will provide an environmentally friendly and efficient way to prepare the superhydrophilic/oleophobic materials.

18.
Int J Biol Macromol ; 256(Pt 2): 128579, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048931

ABSTRACT

As a well-known natural and innocuous plant constituent, cellulose consists of abundant hydroxyl groups and can tightly adsorb onto material surfaces hydrogen bonding, resulting in a superhydrophilic surface. In this work, the hydrophobic polyvinylidene fluoride (PVDF) membranes were modified by immersing them in cellulose hydrogel using a simple one-step process. The modified PVDF membrane exhibited excellent resistance to fouling and oil adhesion, making it highly effective in separating various oil-in-water emulsions. The cellulose-modified PVDF membranes achieved a high oil rejection rate (>99 %) and a maximum separation flux of 2675.2 L·m-2·h-1. Furthermore, even an oil-in-water emulsion containing bovine serum albumin maintained a steady permeation flux after four filtration cycles. Additionally, these cellulose-modified PVDF membranes demonstrated excellent underwater superoleophobicity across a wide range of pH levels and high saline conditions. Overall, these cellulose-modified superhydrophilic PVDF membranes are sustainable, environmentally friendly, easily scalable, and hold great promise for practical applications in oily wastewater treatment.


Subject(s)
Biofouling , Cellulose , Fluorocarbon Polymers , Polyvinyls , Cellulose/chemistry , Emulsions , Hydrogels , Oils
19.
J Hazard Mater ; 465: 133305, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38141309

ABSTRACT

Separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. To address the challenges posed by the water-oil interface, superwetting materials have been designed to accomplish separation through filtration and adsorption. Superhydrophobic membranes prevent the permeation of water droplets owing to extreme repellence and their size-sieving abilities. However, their use in remediating water-contaminated oil is limited by high oil viscosities. Meanwhile, in-air superhydrophilic sorbents are rarely employed for the separation of water-in-oil emulsions due to the thermodynamic and kinetic limitations of water adsorption in oil. Herein, the integration of an under-medium superlyophilic membrane with the hierarchical porous structure of wood is presented for filtration-driven selective adsorption of water from surfactant-stabilized (10 g/L) water-in-oil emulsions. Compared to filtration through a natural wood membrane or direct adsorption using an under-oil superhydrophilic wood membrane, the under-medium superlyophilic wood membrane demonstrated high separation efficiencies of > 99.95% even when applied to the regeneration of high-viscosity lubricating (6.3 mPa s) and edible (50.5 mPa s) oils, exhibiting viscosity-dependent fluxes and excellent stability. Moreover, the cost of purifying 200 mL of lubricating oil using the modified wood membrane was much lower than the oil's market price and required a low energy consumption of ca. 1.72 kWh. ENVIRONMENTAL IMPLICATION: The ever-growing use of petroleum and industrial/domestic oil products has led to excessive (estimated at a million tons per year) output of waste oils. Because direct discharge of waste oils into the environment causes serious pollution problems, separating water-in-oil emulsions is important in terms of environmental protection and resource recovery. Here filtration-driven water adsorption has been demonstrated to be a feasible method for the remediation of water-contaminated waste oils, even those that are highly viscous.

20.
J Hazard Mater ; 465: 133373, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38159520

ABSTRACT

The adhesion of high-viscosity oil contamination poses limitations on three-dimensional (3D) materials' practical use in treating oilfield-produced water (OPW). In this study, we developed a hybrid pDA/TiO2/SiO2 coating (PTS) on the surface of hydrophilic activated carbon (ACF1) through a combination of dopamine (DA) polymerization, ethyl orthosilicate (TEOS) hydrolysis, and the condensation of TiO2 nanoparticles (NPs) with SiO2 NPs. This coating was designed for gravity-based oil-water separation. The inherent porosity and generous pore size of ACF1-PTS conferred it an ultra-high permeation flux (pure water flux of 3.72 × 105 L∙m-2∙h-1), allowing it to effectively separate simulated oil-water mixtures and oil-water emulsions while maintaining exceptional permeation flux and oil rejection efficiency. When compared to cleaning methods involving ethanol aqueous solutions and NaClO, ultraviolet (UV) illumination cleaning proved superior, enabling oil-contaminated ACF1-PTS to exhibit remarkable flux recovery efficiency and oil-removal capabilities during cyclic separation of actual OPW. Furthermore, the ACF1-PTS material demonstrated impressive stability and durability when exposed to acidic environments (acid, alkali, and salt), robust hydraulic washout conditions, and 25-cycle tests. This study offers valuable insights and research avenues for the development of highly efficient and environmentally friendly 3D oil-water separation materials for the actual treatment of OPW.

SELECTION OF CITATIONS
SEARCH DETAIL
...