Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.417
Filter
1.
J Hazard Mater ; 476: 135131, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39018593

ABSTRACT

Extracting clean water from oily wastewater and seawater is one of the effective strategies to alleviate the freshwater crisis. However, achieving both high separation efficiency and excellent salt resistance remain challenges for materials. Herein, a novel methyltrichlorosilane-modified polyvinyl alcohol/cellulose aerogel (MPCA) was prepared by freeze drying, chemical cross-linking, and chemical vapor deposition (CVD) methods. The superwetting MPCA presented an asymmetric structure, in which the small dense pores at the top surface facilitated the efficient separation of water-in-oil (W/O) emulsions and the large pores on the bottom surface were beneficial for brine exchange. The as-prepared superwetting aerogel was suitable for the separation of various W/O emulsions with excellent separation flux (631.9-2368.7 L·m-2·h-1) and outstanding separation efficiency (99.5 %). In addition, MPCA achieved a high evaporation efficiency of 1.39 kg·m-2·h-1 and a satisfactory energy conversion efficiency of 89.7 %. Moreover, the unique asymmetric structure endowed the evaporator excellent salt resistance and could self-dissolve the accumulated salt in 20 min. The as-prepared MPCA could achieve efficient W/O emulsion separation as well as produce freshwater in seawater, providing a new strategy for oily waste seawater purification.

2.
J Nanobiotechnology ; 22(1): 414, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010059

ABSTRACT

Staphylococcus aureus (SA) poses a serious risk to human and animal health, necessitating a low-cost and high-performance analytical platform for point-of-care diagnostics. Cellulose paper-based field-effect transistors (FETs) with RNA-cleaving DNAzymes (RCDs) can fulfill the low-cost requirements, however, its high hydrophilicity and lipophilicity hinder biochemical modification and result in low sensitivity, poor mechanical stability and poor fouling performance. Herein, we proposed a controllable self-cleaning FET to simplify biochemical modification and improve mechanical stability and antifouling performance. Then, we constructed an RCD-based DNA nanotree to significantly enhance the sensitivity for SA detection. For controllable self-cleaning FET, 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane based-polymeric nanoparticles were synthesized to decorate cellulose paper and whole carbon nanofilm wires. O2 plasma was applied to regulate to reduce fluorocarbon chain density, and then control the hydrophobic-oleophobic property in sensitive areas. Because negatively charged DNA affected the sensitivity of semiconducting FETs, three Y-shaped branches with low-cost were designed and applied to synthesize an RCD-based DNA-Nanotree based on similar DNA-origami technology, which further improved the sensitivity. The trunk of DNA-Nanotree was composed of RCD, and the canopy was self-assembled using multiple Y-shaped branches. The controllable self-cleaning FET biosensor was applied for SA detection without cultivation, which had a wide linear range from 1 to 105 CFU/mL and could detect a low value of 1 CFU/mL.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Staphylococcus aureus , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Biosensing Techniques/methods , Transistors, Electronic , RNA/metabolism , Limit of Detection , Cellulose/chemistry , Paper , Nanoparticles/chemistry , Humans
3.
ACS Appl Mater Interfaces ; 16(28): 36840-36850, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954505

ABSTRACT

White Roman goose (Anser anser domesticus) feathers, comprised of oriented conical barbules, are coated with gland-secreted preening oils to maintain a long-term nonwetting performance for surface swimming. The geese are accustomed to combing their plumages with flat bills in case they are contaminated with oleophilic substances, during which the amphiphilic saliva spread over the barbules greatly impairs their surface hydrophobicities and allows the trapped contaminants to be anisotropically self-cleaned by water flows. Particularly, the superhydrophobic behaviors of the goose feathers are recovered as well. Bioinspired by the switchable anisotropic self-cleaning functionality of white Roman geese, superhydrophobic unidirectionally inclined conical structures are engineered through the integration of a scalable colloidal self-assembly technology and a colloidal lithographic approach. The dependence of directional sliding properties on the shape, inclination angle, and size of conical structures is systematically investigated in this research. Moreover, their switchable anisotropic self-cleaning functionalities are demonstrated by Sudan blue II/water (0.01%) separation performances. The white Roman goose feather-inspired coatings undoubtedly offer a new concept for developing innovative applications that require directional transportation and the collection of liquids.


Subject(s)
Feathers , Geese , Animals , Feathers/chemistry , Anisotropy , Hydrophobic and Hydrophilic Interactions , Surface Properties , Colloids/chemistry
4.
ACS Appl Mater Interfaces ; 16(28): 37111-37121, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968403

ABSTRACT

A fundamental challenge in artificial superhydrophobic papers is their poor resistance to mechanical abrasion, which limits their practical application in different fields. Herein, a robust and multifunctional superhydrophobic paper is successfully fabricated via a facile spraying method by combining silver nanowires and fluorinated titania nanoparticles through a common paper sizing agent (alkyl ketene dimer) onto paper. It is shown that the surface of the paper-based material presents a three-dimensional network structure due to the cross-linking of silver nanowires with a high aspect ratio. Further hydrophilic and hydrophobic performance test results show that it exhibits exceptional water repellency, with a desirable static contact angle of 165° and roll-off angle of 6.2°. The superhydrophobic paper showcases excellent mechanical durability and maintains its superhydrophobicity even after enduring 130 linear sandpaper abrasion cycles or high-velocity water jetting impact benefited from interfacial van der Waals and hydrogen bonding. Simultaneously, the robust superhydrophobic surface can effectively prevent the penetration of acid or alkali solutions, as well as UV light, resulting in excellent chemical stability. Additionally, the superhydrophobic paper offers supplementary features such as self-cleaning, electrical conductivity, and antibacterial capability. Further development of this strategy paves a way toward next-generation superhydrophobic paper composed of nanostructures and characterized by multiple (or additional) functionalities.

5.
Small Methods ; : e2400459, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007253

ABSTRACT

The growing interest in flexible superhydrophobic surfaces extends beyond various practical applications like solar panels, flexible electronics, etc. This study introduces a cost-effective and environmentally friendly method to create a durable, flexible, and optically semi-transparent superhydrophobic film with an extreme anti-icing character. The prestrained polydimethylsiloxane film subjected to biofuel-based flame treatment under controlled conditions induces microwrinkles with a superimposed cluster of nanoparticles while maintaining surface flexibility and transparency. This meticulous process enhances surface roughness, achieving superhydrophobic characteristics (θ > 165˚) with a remarkably low tilting angle (<3˚) with adhesion against water <2 µN (lower than Lotus leaf). The films applied over solar panels result in <1% voltage drop within 5 s due to effective cleaning under simulated rain. The remarkable anti-icing performance of the developed film is characterized by ice adhesion <25 kPa over 50 icing/de-icing cycles attributed to the presence of nanoclusters. The films displayed exceptional resilience and sustained efficacy under prolonged exposure to harsh external environments. These superhydrophobic films, characterized by flexibility, durability, and transparency, present promising opportunities for fabricating structures, even with intricate geometries. These findings imply a significant stride in the practical utilization of superhydrophobic surfaces, demonstrating their potential in diverse real-world applications.

6.
Polymers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000647

ABSTRACT

High-density polyethylene (HDPE) waste poses a significant environmental challenge due to its non-biodegradable nature and the vast quantities generated annually. However, conventional recycling methods are energy-intensive and often yield low-quality products. Herein, HDPE waste is upcycled into anti-aging, superhydrophobic thin films suitable for outdoor applications. A two-layer spin-casting method combined with heating-induced crosslinking is utilized to produce an exceptionally rough superhydrophobic surface, featuring a root mean square (RMS) roughness of 50 nm, an average crest height of 222 nm, an average trough depth of -264 nm, and a contact angle (CA) of 148°. To assess durability, weathering tests were conducted, revealing the films' susceptibility to degradation under harsh conditions. The films' resistance to environmental factors is improved by incorporating a UV absorber, maintaining their hydrophobic properties and mechanical strength. Our research demonstrates a sustainable method for upcycling waste into high-performance, weather-resistant, superhydrophobic films.

7.
Polymers (Basel) ; 16(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000731

ABSTRACT

Surface roughness and low surface energy are key elements for the artificial preparation of biomimetic superhydrophobic materials. However, the presence of micro-/nanostructures and the corresponding increase in roughness can increase light scattering, thereby reducing the surface transparency. Therefore, designing and constructing superhydrophobic surfaces that combine superhydrophobicity with high transparency has been a continuous research focus for researchers and engineers. In this study, a transparent superhydrophobic coating was constructed on glass substrates using hydrophobic fumed silica (HF-SiO2) and waterborne polyurethane (WPU) as raw materials, combined with a simple spray-coating technique, resulting in a water contact angle (WCA) of 158.7 ± 1.5° and a sliding angle (SA) of 6.2 ± 1.8°. Characterization tests including SEM, EDS, LSCM, FTIR, and XPS revealed the presence of micron-scale protrusions and a nano-scale porous network composite structure on the surface. The presence of HF-SiO2 not only provided a certain roughness but also effectively reduced surface energy. More importantly, the coating exhibited excellent water-repellent properties, extremely low interfacial adhesion, self-cleaning ability, and high transparency, with the light transmittance of the coated glass substrate reaching 96.1% of that of the bare glass substrate. The series of functional characteristics demonstrated by the transparent superhydrophobic HF-SiO2@WPU coating designed and constructed in this study will play an important role in various applications such as underwater observation windows, building glass facades, automotive glass, and goggles.

8.
Article in English | MEDLINE | ID: mdl-38988275

ABSTRACT

Antireflective coatings with superhydrophobicity have many outdoor applications, such as solar photovoltaic panels and windshields. In this study, we fabricated an omnidirectional antireflective and superhydrophobic coating with good mechanical robustness and environmental durability via the spin coating technique. The coating consisted of a layer of phytic acid (PA)/polyacrylamide (PAM)/calcium ions (Ca2+) (referred to as Binder), an antireflective layer composed of chitin nanofibers (ChNFs), and a hydrophobic layer composed of methylsilanized silica (referred to as Mosil). The transmittance of a glass slide with the Binder/ChNFs/Mosil coating had a 5.2% gain at a wavelength of 550 nm, and the antireflective coating showed a water contact angle as high as 160° and a water sliding angle of 8°. The mechanical robustness and environmental durability of the coating, including resistance to peeling, dynamic impact, chemical erosion, ultraviolet (UV) irradiation, and high temperature, were evaluated. The coating retained excellent antireflective capacity and self-cleaning performance in the harsh conditions. The increase in voltage per unit area of a solar panel with a Binder/ChNFs/Mosil coating reached 0.4 mV/cm2 compared to the solar panel exposed to sunlight with an intensity of 54.3 × 103 lx. This work not only demonstrates that ChNFs can be used as raw materials to fabricate antireflective superhydrophobic coatings for outdoor applications but also provides a feasible and efficient approach to do so.

9.
ACS Nano ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033415

ABSTRACT

For highly active electron transfer and ion diffusion, controlling the surface wettability of electrically and thermally conductive 3D graphene foams (3D GFs) is required. Here, we present ultrasimple and rapid superwettability switching of 3D GFs in a reversible and reproducible manner, mediated by solvent-exclusive microwave arcs. As the 3D GFs are prepared with vapors of nonpolar acetone or polar water exclusively, short microwave radiation (≤10 s) leads to plasma hotspot-mediated production of methyl and hydroxyl radicals, respectively. Upon immediate radical chemisorption, the 3D surfaces become either superhydrophobic (water contact angle = ∼170°) or superhydrophilic (∼0°), and interestingly, the wettability transition can be repeated many times due to the facile exchange between previously chemisorbed and newly introduced radicals via the formation of methanol-like intermediates. When 3D GFs of different surficial polarities are incorporated into electric double-layer capacitors with nonpolar ionic liquids or polar aqueous electrolytes, the polarity matching between graphene surfaces and electrolytes results in ≥548.0 times higher capacitance compared to its mismatching at ≥0.5 A g-1, demonstrating the significance of wettability-controlled 3D GFs.

10.
J Mol Graph Model ; 132: 108831, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39033601

ABSTRACT

As a functional material, superhydrophobic coating has been widely studied in the field of self-cleaning. However, obtaining superhydrophobic coatings with robustness through simple preparation processes remains a challenge. In this paper, a robust superhydrophobic coating is prepared based on multi-walled carbon nanotubes modified by octyltrimethoxysilane, and its performance and hydrophobic mechanism are studied by experiments and molecular dynamics simulation. The superhydrophobic coating is prepared by one-step spraying method. The coating is characterized and analyzed by scanning electron microscopy and Fourier transform infrared spectroscopy, and the properties of the coating are tested by experiments. Molecular dynamics simulation is used in the study to construct a molecular model system, and the molecular modification mechanism and coating wettability are simulated under the COMPASSII force field. The results show that octyltrimethoxysilane successfully modified carbon nanotubes, and the hydroxyl groups at the head of the molecular chain are bound to the surface of the carbon nanotubes in the form of hydrogen bonds, while the tail of the molecular chain is far away from the surface. After modification, the surface of carbon nanotubes changed from hydrophilic to hydrophobic. The prepared superhydrophobic coating not only has excellent self-cleaning properties, but also exhibits corrosion resistance to acid and alkali solutions. The coating still has superhydrophobic when the wear length is in the range of 400 cm. It can be seen that a robust superhydrophobic self-cleaning coating is successfully prepared by a simple one-step spraying method. The modification mechanism and the hydrophobic mechanism of the coating were obtained by the combination of experiment and molecular dynamics simulation, which provided theoretical support for the superhydrophobic of the coating at the micro level.

11.
Article in English | MEDLINE | ID: mdl-39034615

ABSTRACT

Underwater superhydrophobic surfaces stand as a promising frontier in technological applications such as drag reduction, antifouling, and anticorrosion. Unfortunately, the air film, known as the plastron, on these surfaces tends to be unstable. To address this problem, active approaches have been designed to preserve or restore plastrons. In this work, a self-driven gas spreading superhydrophobic mesh (SHM) surface is designed to facilitate recovery of the plastron. The immersed SHM can be "wetted" by gas, even when the plastron is removed. We demonstrate that the injected gas can spread spontaneously along the SHM over a large area, which greatly simplifies the plastron replenishment process. By incorporating a locally coated gas-producing layer, we achieve rapid in situ plastron recovery and long-term immersion stability, extending the plastron lifespan by at least 48 times. We also provide a framework for designing an SHM with suitable structural dimensions for gas spreading. Furthermore, an SHM with asymmetric structural dimensions enables unidirectional gas transport by the capillary pressure difference. This SHM surface shows excellent drag reduction properties (37.2%) and has a high slip recovery coefficient (73.4%) after plastron loss. This facile and scalable method is expected to broaden the range of potential applications involving nonwetting-related fields.

12.
Adv Sci (Weinh) ; : e2403366, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953394

ABSTRACT

Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical-free and energy-passive bubble capture is desirable for numerous industrial processes, including mineral flotation, wastewater treatment, and electrolysis. When immersed, super-liquid-repellent surfaces form plastrons, which are textured solid topographies with interconnected gas domains. Plastrons exhibit the remarkable ability of capturing bubbles through coalescence. However, the two-step mechanics of plastron-induced bubble coalescence, namely, rupture (initiation and location) and subsequent absorption (propagation and drainage) are not well understood. Here, the influence of 1) topographical feature size and 2) gas fraction on bubble capture dynamics is investigated. Smaller feature sizes accelerate rupture while larger gas fractions markedly improve absorption. Rupture is initiated solely on solid domains and is more probable near the edges of solid features. Yet, rupture time becomes longer as solid fraction increases. This counterintuitive behavior represents unexpected complexities. Upon rupture, the bubble's moving liquid-solid contact line influences its absorption rate and equilibrium state. These findings show the importance of rationally minimizing surface feature sizes and contact line interactions for rapid bubble rupture and absorption. This work provides key design principles for plastron-induced bubble coalescence, inspiring future development of industrially-relevant surfaces for underwater bubble capture.

13.
Small ; : e2402481, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953414

ABSTRACT

Superhydrophobic surfaces are of great interest because of their remarkable properties. Due to its maximal hardness and chemical inertness, diamond film has great potential in fabricating robust superhydrophobic surfaces. In the present study, an oxygen-terminated polycrystalline boron-doped diamond (O-PBDD) superhydrophobic surface with micro/nano-hierarchical porous structures is developed. The preparation method is very simple, requiring only sputtering and dewetting procedures. The former involves sputtering gold and copper particles onto the hydrogen-terminated polycrystalline boron-doped diamond (H-PBDD) to form gold/copper films, whereas the latter involves placing the samples in an atmospheric tube furnace to form hierarchical pores. By controlling the etching parameters, the wettability of the O-PBDD surface can be adjusted from hydrophilic to superhydrophobic, which is significantly different to the normal hydrophilicity feature of O-termination diamonds. The water contact angle of the obtained O-PBDD surface can reach 165 ± 5°, which is higher than the superhydrophobic diamond surfaces that are reported in the literature. In addition, the O-PBDD surface exhibits excellent durability; it can maintain satisfactory superhydrophobicity even after high-pressure, high-temperature, and sandpaper friction tests. This work provides a new research direction for fabricating robust superhydrophobic materials with diamond film.

14.
Adv Sci (Weinh) ; : e2403028, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946620

ABSTRACT

Superhydrophobic surfaces (SHS) exhibit a pronounced ability to resist wetting. When immersed in water, water does not penetrate between the microstructures of the SHS. Instead, a thin layer of trapped gas remains, i.e., plastron. This fractional wetting is also known as the Cassie-Baxter state (CB). Impairment of superhydrophobicity occurs when water penetrates the plastron and, when complete wetting is achieved, a Wenzel state (W) results. Subsequent recovery back to CB state is one of the main challenges in the field of SHS wetting. Current methods for plastron recovery require complex mechanical or chemical integration, are time-consuming or lack spatial control. Here an on-demand, contact-less approach for performing facile transitions between these wetting states at micrometer length scales is proposed. This is achieved by the use of acoustic radiation force (ARF) produced by high-intensity focused ultrasound (HIFU). Switching from CB to W state takes <100 µs, while the local recovery back to CB state takes <45 s. To the best of authors knowledge, this is the first demonstration of ARF-induced manipulation of the plastron enabling facile two-way controlled switching of wetting states.

15.
ACS Appl Bio Mater ; 7(7): 4510-4518, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38950150

ABSTRACT

Fungal proliferation can lead to adverse effects for human health, due to the production of pathogenic and allergenic toxins and also through the creation of fungal biofilms on sensitive surfaces (i.e., medical equipment). On top of that, food spoilage from fungal activity is a major issue, with food losses exceeding 30% annually. In this study, the effect of the surface micro- and nanotopography, material (aluminum, Al, and poly(methyl methacrylate), PMMA), and wettability against Aspergillus awamori is investigated. The fungal activity is monitored using dynamic conditions by immersing the surfaces inside fungal spore-containing suspensions and measuring the fungal biomass growth, while the surfaces with the optimum antifungal properties are also evaluated by placing them near spore suspensions of A. awamori on agar plates. Al- and PMMA-based superhydrophobic surfaces demonstrate a passive-like antifungal profile, and the fungal growth is significantly reduced (1.6-2.2 times lower biomass). On the other hand, superhydrophilic PMMA surfaces enhance fungal proliferation, resulting in a 2.6 times higher fungal total dry weight. In addition, superhydrophobic surfaces of both materials exhibit antifouling and antiadhesive properties, whereas both superhydrophobic surfaces also create an "inhibition" zone against the growth of A. awamori when tested on agar plates.


Subject(s)
Aspergillus , Biocompatible Materials , Materials Testing , Particle Size , Surface Properties , Wettability , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Polymethyl Methacrylate/chemistry , Polymethyl Methacrylate/pharmacology , Cell Proliferation/drug effects
16.
Food Microbiol ; 123: 104586, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038892

ABSTRACT

Wood is reportedly more difficult to maintain in hygienic condition versus other food contact materials, yet its use in produce packing and retail warrants efforts to reduce the risk of microbial pathogen contamination and attachment. This study characterized antifouling capabilities of fluorinated silanes applied to wood used in fresh edible produce handling to render the wood superhydrophobic and less supportive of bacterial pathogen attachment. Pine and oak cubic coupon surfaces were treated with 1% (w/w) silane or left untreated. Treated and untreated coupons were inoculated with Salmonella enterica or Listeria monocytogenes and held to facilitate pathogen attachment for 1, 4, or 8 h. Silane treatment of wood produced significant reductions in the proportions of strongly attaching cells for both pathogens versus loosely attaching cells (P < 0.01). Salmonella attachment demonstrated a dependency on wood treatment; silane-treated wood supported a lower fraction of strongly adhering cells (1.87 ± 1.24 log CFU/cm2) versus untreated wood (3.72 ± 0.67 log CFU/cm2). L. monocytogenes demonstrated significant declines in strongly attaching cells during extended exposure to silane-treated wood, from 7.59 ± 0.14 to 5.27 ± 0.68 log CFU/cm2 over 8 h post-inoculation. Microscopic analysis demonstrated silane treatment increased the surface roughness of both woods, leading to superhydrophobic conditions on wood surfaces, consequently decreasing strong attachment of pathogenic bacteria.


Subject(s)
Bacterial Adhesion , Hydrophobic and Hydrophilic Interactions , Listeria monocytogenes , Salmonella enterica , Silanes , Wood , Wood/microbiology , Wood/chemistry , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Listeria monocytogenes/physiology , Bacterial Adhesion/drug effects , Salmonella enterica/drug effects , Salmonella enterica/growth & development , Humans , Silanes/pharmacology , Silanes/chemistry , Food Microbiology , Food Contamination/prevention & control , Food Contamination/analysis , Food Packaging/methods , Colony Count, Microbial , Quercus/microbiology , Quercus/chemistry , Pinus/microbiology
17.
Int J Biol Macromol ; : 133863, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025182

ABSTRACT

Fats, oils and grease (FOGs) deposits in sewers have recently become a significant problem, causing financial strain on water companies, damaging sewer lines, and exposing the environment to dirty water through sanitary sewer overflows. Despite the proactive use of grease traps for physical oil-water separation, the issue of FOG deposits persists. This study proposes the use of adsorption-based oil-water separation, employing superhydrophobic cotton, as a new alternative method for removing FOGs. Durable superhydrophobic cotton was successfully prepared using a simple two-step sol-gel method, with octadecyltrimethoxysilane (ODTMS) as a modifying silane. The resulting cotton samples demonstrated remarkable superhydrophobicity, evidenced by water contact angle (WCA) above 154°. Additionally, it exhibited exceptional durability and stability when exposed to hot water, harsh acidic and alkaline solutions, as well as during a laundry test. Moreover, the cotton displayed excellent oil-water separation efficiency (> 98 %) and maintained consistent performance throughout 20 reuse cycles, highlighting its high reusability. This approach holds the potential to address the prevailing FOG deposit issues and contribute to more efficient and sustainable wastewater management practices.

18.
Photochem Photobiol ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824412

ABSTRACT

Photochemical generation of singlet oxygen (1O2) often relies on homogenous systems; however, a dissolved photosensitizer (PS) may be unsuitable for some applications because it is difficult to recover, expensive to replenish, and hazardous to the environment. Isolation of the PS onto a solid support can overcome these limitations, but implementation faces other challenges, including agglomeration of the solid PS, physical quenching of 1O2 by the support, photooxidation of the PS, and hypoxic environments. Here, we explore a superhydrophobic polydimethylsiloxane (SH-PDMS) support coated with the photosensitizer 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin (TFPP). This approach seeks to address the challenges of a heterogeneous system by using a support that exhibits low 1O2 physical quenching rates, a fluorinated PS that is chemically resistant to photooxidation, and a superhydrophobic surface that entraps a layer of air, thus preventing hypoxia. Absorbance and fluorescence spectroscopy reveal the monomeric arrangement of TFPP on SH-PDMS surfaces, a surprising but favorable characteristic for a solid-phase PS on 1O2 yields. We also investigated the effect of incident wavelength on 1O2 yields for TFPP in aqueous solution and immobilized on SH-PDMS and found overall yields to be dependent on the absorption coefficient, while the yield per absorbed photon exhibited wavelength independence, in accordance with Kasha-Vavilov's rule.

19.
Exploration (Beijing) ; 4(3): 20230085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939859

ABSTRACT

To overcome the overheating phenomena of electronic devices and energy components, developing advanced energy-free cooling coatings with promising radiative property seem an effective and energy-saving way. However, the further application of these coatings is greatly limited by their sustainability because of their fragile and easy contamination. Herein, it is reported that a bioinspired radiative cooling coating (BRCC) displayed sustainably efficient heat dissipation by the combination of high emittance and robust self-cleaning property. With the hierarchical porous structure constructed by multiwalled carbon nanotubes (MWCNTs), modified SiO2 and fluorosilicone (FSi) resin, the involvement of the BRCC improves the cooling performance by increasing ≈25% total heat transfer coefficient. During the abrasion and soiling tests, the BRCC-coated Al alloy heat sink always displays stable radiative cooling performance. Moreover, the simulation and experimental results both revealed that reducing surface coverage of BRCC (≈80.9%) can still keep highly cooling efficiency, leading to a cost-effective avenue. Therefore, this study may guide the design and fabrication of advanced radiative cooling coating.

20.
Polymers (Basel) ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932022

ABSTRACT

In this study, a series of amine-modified mesoporous silica (AMS)-based epoxy composites with superhydrophobic biomimetic structure surface of Xanthosoma sagittifolium leaves (XSLs) were prepared and applied as anti-corrosion and anti-biofilm coatings. Initially, the AMS was synthesized by the base-catalyzed sol-gel reaction of tetraethoxysilane (TEOS) and triethoxysilane (APTES) through a non-surfactant templating route. Subsequently, a series of AMS-based epoxy composites were prepared by performing the ring-opening polymerization of DGEBA with T-403 in the presence of AMS spheres, followed by characterization through FTIR, TEM, and CA. Furthermore, a nano-casting technique with polydimethylsiloxane (PDMS) as the soft template was utilized to transfer the surface pattern of natural XSLs to AMS-based epoxy composites, leading to the formation of AMS-based epoxy composites with biomimetic structure. From a hydrophilic CA of 69°, the surface of non-biomimetic epoxy significantly increased to 152° upon introducing XSL surface structure to the AMS-based epoxy composites. Based on the standard electrochemical anti-corrosion and anti-biofilm measurements, the superhydrophobic BEAMS3 composite was found to exhibit a remarkable anti-corrosion efficiency of ~99% and antimicrobial efficacy of 82% as compared to that of hydrophilic epoxy coatings.

SELECTION OF CITATIONS
SEARCH DETAIL
...