Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(24): 28370-28377, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35679602

ABSTRACT

The features of the electrode surface film during Li-metal deposition and dissolution cycles are essential for understanding the mechanism of the negative electrode reaction in Li-metal battery cells. The physical and chemical property changes of the interface during the initial stages of the reaction should be investigated under operando conditions. In this study, we focused on the changes in the optical properties of the electrode surface film of the negative electrode of a Li-metal battery. Cu-based electrochemical surface plasmon resonance spectroscopy (EC-SPR) was applied because of its high sensitivity to optical phenomena on the electrode surface and its stability against Li-metal deposition. The feature of SPR reflectance dip depends on the optical properties of the electrode surface; namely, the wavelength and depth of the reflectance dip directly connected the refractive index and extinction coefficient (color of electrode surface film), which was confirmed by reflectance simulation. In the operando EC-SPR experiment, various changes in optical properties were clearly observed during the cycles. In particular, the change in the extinction coefficient was more remarkable at the second process than the first process of Li-metal deposition. By electrochemical quartz-crystal microbalance (EQCM) measurements, surface film formation was confirmed during the first Li-metal deposition process. The remarkable change in the extinction coefficient is based on the color change of the surface film, which is caused by the chemical condition change during Li-metal deposition cycles.

2.
Pharmaceutics ; 14(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35631539

ABSTRACT

Nasal sprays, which produce relatively large pharmaceutical droplets and have high momentum, are primarily used to deliver locally acting drugs to the nasal mucosa. Depending on spray pump administration conditions and insertion angles, nasal sprays may interact with the nasal surface in ways that creates complex droplet-wall interactions followed by significant liquid motion after initial wall contact. Additionally, liquid motion can occur after deposition as the spray liquid moves in bulk along the nasal surface. It is difficult or impossible to capture these conditions with commonly used computational fluid dynamics (CFD) models of spray droplet transport that typically employ a deposit-on-touch boundary condition. Hence, an updated CFD framework with a new spray-wall interaction (SWI) model in tandem with a post-deposition liquid motion (PDLM) model was developed and applied to evaluate nasal spray delivery for Flonase and Flonase Sensimist products. For both nasal spray products, CFD revealed significant effects of the spray momentum on surface liquid motion, as well as motion of the surface film due to airflow generated shear stress and gravity. With Flonase, these factors substantially influenced the final resting place of the liquid. For Flonase Sensimist, anterior and posterior liquid movements were approximately balanced over time. As a result, comparisons with concurrent in vitro experimental results were substantially improved for Flonase compared with the traditional deposit-on-touch boundary condition. The new SWI-PDLM model highlights the dynamicenvironment that occurs when a nasal spray interacts with a nasal wall surface and can be used to better understand the delivery of current nasal spray products as well as to develop new nasal drug delivery strategies with improved regional targeting.

3.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577192

ABSTRACT

Achieving the full potential of magnesium-ion batteries (MIBs) is still a challenge due to the lack of adequate electrodes or electrolytes. Grignard-based electrolytes show excellent Mg plating/stripping, but their incompatibility with oxide cathodes restricts their use. Conventional electrolytes like bis(trifluoromethanesulfonyl)imide ((Mg(TFSI)2) solutions are incompatible with Mg metal, which hinders their application in high-energy Mg batteries. In this regard, alloys can be game changers. The insertion/extraction of Mg2+ in alloys is possible in conventional electrolytes, suggesting the absence of a passivation layer or the formation of a conductive surface layer. Yet, the role and influence of this layer on the alloys performance have been studied only scarcely. To evaluate the reactivity of alloys, we studied InSb as a model material. Ex situ X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy were used to investigate the surface behavior of InSb in both Grignard and conventional Mg(TFSI)2/DME electrolytes. For the Grignard electrolyte, we discovered an intrinsic instability of both solvent and salt against InSb. XPS showed the formation of a thick surface layer consisting of hydrocarbon species and degradation products from the solvent (THF) and salt (C2H5MgCl-(C2H5)2AlCl). On the contrary, this study highlighted the stability of InSb in Mg(TFSI)2 electrolyte.

4.
Nano Converg ; 8(1): 21, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34259945

ABSTRACT

Herein, the ferrocene redox indicator-based surface film characteristics of spinel lithium manganese oxide (LMO) were evaluated. The pre-cycling of spinel LMO generated a film on the LMO surface. The surface film deposited on LMO surface suppresses further electrolyte decomposition, while the penetration of approximately 0.7 nm-sized redox indicator is not prevented. The facile self-discharge of LMO and regeneration current from the ferrocenium molecule was observed from the redox indicator in a specifically designed four-electrode cell. From this electrochemical behavior, a small-sized HF molecule attack on the LMO surface through a carbonate-based electrolyte-derived film is defined; hence, the prevention of small-sized molecules into the deposited surface film is crucial for the enhancement of LiMn2O4-based lithium-ion batteries.

5.
Environ Sci Pollut Res Int ; 28(5): 5443-5454, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32968901

ABSTRACT

The aim of the study was to quantify the adsorptive and thermo-elastic properties of snowmelt water surface films and their spatial-temporal evolution with snowpack structure characteristics and the entrapped surface-active organic composition. Surface pressure-area (π-A)T isotherms, surface pressure-temperature (π-T)A isochors, and stress-relaxation (π-t) measurements were performed using a Langmuir trough system on snowmelt water samples collected in a large-scale field studies performed at several industrialized and rural Tricity (Gdansk, Poland) areas at various environmental conditions and subsequent stages of the snowpack melting progress. Since the snow-melted water composition and concentrations of surface active organic matter fractions therein are largely undetermined, the force-area isotherm scaling formalisms (2D virial equation and 2D film scaling theory of polymeric films) were adapted to the complex mixture of surfactants. The surface film parameters and their spatial and temporal evolution turned out to be unequivocally related to principal signatures of the film-forming materials: surfactant concentrations (π, Alim), surface activity (Eisoth, |E|), film material solubility (R), surface material miscibility and 2D architecture complexity (y, ßs), molecular thermal mobility (πk), and a timescale of the relaxation processes within the film (τi, |E|). Moreover, the parameters appeared to be correlated with snowpack structure characteristics (snow density ρ, specific snow area SSA, snow cover thickness), sample age time, and anthropogenic atmospheric contamination pressure source locations. In particular, Eisoth was found to be related to ρ and SSA, while R correlated with the solubility of film-forming organics which turned out to be long-chain fatty acids; similarly, spatial profiles of Eisoth revealed the peak values next to the areas being under a severe anthropogenic air pollution pressure. Snowmelt water films stand for a structurally heterogeneous (y > 10) interfacial system where several transition processes of differentiated time-scales (relaxation times from 7 to 63 s) took place leading to the apparent surface viscoelasticity. To sum up, the established surface rheological parameters could serve as novel indicators, based solely on physical attributes, allowing to follow the snowpack evolution, and its melting polymorphism in order to test or improve the existing snow-entrapped organics release models based on chemical analyses. The cross-correlation functional dependences of practical value remain to be established on the larger data set.


Subject(s)
Snow , Water , Poland , Rheology , Temperature
6.
Article in English | MEDLINE | ID: mdl-32777466

ABSTRACT

The failure of the swim bladder to inflate during fish development is a common and sensitive response to exposure to petrochemicals. Here, we review potential mechanisms by which petrochemicals or their toxic components (polycyclic aromatic hydrocarbons; PAHs) may affect swim bladder inflation, particularly during early life stages. Surface films formed by oil can cause a physical barrier to primary inflation by air gulping, and are likely important during oil spills. The act of swimming to the surface for primary inflation can be arduous for some species, and may prevent inflation if this behavior is limited by toxic effects on vision or musculature. Some studies have noted altered gene expression in the swim bladder in response to PAHs, and Cytochrome P450 1A (CYP1A) can be induced in swim bladder or rete mirabile tissue, suggesting that PAHs can have direct effects on swim bladder development. Swim bladder inflation failure can also occur secondarily to the failure of other systems; cardiovascular impairment is the best elucidated of these mechanisms, but other mechanisms might include non-inflation as a sequela of disruption to thyroid signaling or cholesterol metabolism. Failed swim bladder inflation has the potential to lead to chronic sublethal effects that are as yet unstudied.


Subject(s)
Air Sacs/drug effects , Fishes/growth & development , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Air Sacs/growth & development , Air Sacs/pathology , Animals , Embryo, Nonmammalian , Fishes/embryology , Fishes/physiology , Organogenesis , Petroleum/poisoning , Polycyclic Aromatic Hydrocarbons/poisoning , Swimming , Water Pollutants, Chemical/toxicity
7.
J Am Mosq Control Assoc ; 36(1): 47-50, 2020 03.
Article in English | MEDLINE | ID: mdl-32497480

ABSTRACT

The efficacy of CocoBear™ Larvicidal Oil and Aquatain® AMF Liquid Mosquito Film against larval and pupal Culex quinquefasciatus was compared (at maximum label field application rates) when applied to concrete troughs treated with composted cow manure. At 1 h posttreatment, CocoBear provided significantly greater reduction of mosquito larvae than Aquatain, but both products were equally effective in producing >97% control at 24 h. Each product provided >98% pupal reduction at 1 h posttreatment, with complete elimination of pupae from troughs at 24 h. CocoBear and Aquatain proved to be equally effective against Cx. quinquefasciatus immatures in organically enriched aquatic habitats.


Subject(s)
Culex , Insecticides , Mosquito Control , Silicon , Animals , Culex/growth & development , Larva , Pupa
8.
Front Chem ; 8: 272, 2020.
Article in English | MEDLINE | ID: mdl-32351939

ABSTRACT

The present work focuses on the characterization of brass surfaces after contact with artificial saliva solution at pH 7.4 and phosphate buffer solution at pH 7 simulating two extreme conditions that might occur when playing ancient brass wind instruments in the context of historically informed performance practice. The composition and the morphology of the film formed following the contact with the solutions for 1, 3, and 16 h were investigated by ex situ X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to shed a light on the surface changes upon time. In situ electrochemical impedance spectroscopy (EIS) was used to study the mechanism of corrosion and protection of the alloys. The results could be interpreted using a reliable equivalent electrical circuit; they provided evidence that the alloys behave differently when in contact to the various solutions. In saliva solution the formation on the brass surface of a thick surface film was observed, composed of crystallites of about 200 nm size mainly composed of CuSCN and Zn3(PO4)2. This layer hinders the alloy dissolution. The contact of the alloys with the buffer solution originated a much thinner layer composed of Cu2O, ZnO, and a small amount of Zn3(PO4)2. This film is rapidly formed and does not evolve upon time in a protective film.

9.
ACS Appl Mater Interfaces ; 12(14): 16298-16307, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32216273

ABSTRACT

In this work, we study the effects of three salt-type additives, particularly lithium difluoro(oxalato)borate (LiDFOB), lithium difluoro(bisoxalato)phosphate (LiDFBP), and lithium difluorophosphate (LiPO2F2) on the charging capacity and elevated temperature performance of high-voltage LiNi0.55Co0.15Mn0.3O2 and graphite. These salt-type additives possess different functional groups and thus they perform differently; therefore, it is especially important to investigate the impact of functional group on the electrochemical properties. The experimental results show that the three additives modify the interface of positive cathode or anode. Among them, a study on chemical composition of cathode surface film demonstrates that LiPO2F2 can produce a LiF-rich interface film and LiDFOB can produce borate on the cathodes. Therefore, they bring a notable improvement in elevating the cycling performance and storage performance of a high-voltage LiNi0.55Co0.15Mn0.3O2 electrode. Additionally, a study on chemical composition of anode surface film shows that the three salt-type additives produce a high concentration of P-O, which can greatly reduce charge transfer impedance of the anode electrode, and improve the room temperature cycling and rate performance.

10.
Chemosphere ; 244: 125536, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31816547

ABSTRACT

Hexabromocyclododecane (HBCD) has been listed in Annex A of the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2013, but till now there is a lack of efficient methods for its degradation. In this study, nanoscale zero-valent aluminum (nZVAl), an excellent reductant with a very low redox potential of E0(Al3+/Al0) = -1.662 V and strong electron transfer ability, was used to reductively degrade HBCD. Nearly 100% HBCD was degraded within 8 h reaction at 25 °C in ethanol/water (v/v, 50/50) solution without pH adjustment. And about 67% cyclododecatriene (CDT) was obtained, which is the complete debromination product. What's more, the yield of Br- could achieve nearly 100% after optimizing conditions. The reaction was strongly promoted by increasing the dosages of nZVAl or decreasing the initial concentration of HBCD. The temperature had the most significant influence and the degradation was completed in 40 min with elevating the reaction temperature to 45 °C. The reaction mechanism was further revealed through the characterization of nZVAl particles before and after the reaction by SEM-EDS, TEM, HRTEM, XRD, and XPS. It was found that, after corrosion of the oxide film on the surface of nZVAl, metallic aluminum inside was exposed. The reactive sites were provided and electrons released were transferred from nZVAl to HBCD, causing HBCD degraded to dibromocyclododecadiene (DBCD) and then CDT by reductive debromination. These findings imply that nZVAl can degrade HBCD efficiently with no extra energy input and this offers a new idea for better treatment of HBCD.


Subject(s)
Aluminum/chemistry , Hydrocarbons, Brominated/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Iron/chemistry , Oxides
11.
Mycobiology ; 47(2): 250-255, 2019.
Article in English | MEDLINE | ID: mdl-31448145

ABSTRACT

In the present study, we aimed to determine the cause of surface film formation in three rice vinegars fermented using the traditional static fermentation method. The pH and total acidity of vinegar were 3.0-3.3 and 3.0-8.7%, respectively, and acetic acid was the predominant organic acid present. Colonies showing a clear halo on GYC medium were isolated from the surface film of all vinegars. Via 16S rDNA sequencing, all of the isolates were identified as Acetobacter pasteurianus. Furthermore, field-emission scanning electron microscopy analysis showed that the bacterial cells had a rough surface, were rod-shaped, and were ∼1 × 2 µm in size. Interestingly, cells of the isolate from one of the vinegars were surrounded with an extremely fine threadlike structure. Thus, our results suggest that formation of the surface film in rice vinegar was attributable not to external contamination, to the production of bacterial cellulose by A. pasteurianus to withstand the high concentrations of acetic acid generated during fermentation. However, because of the formation of a surface film in vinegar is undesirable from an industrial perspective, further studies should focus on devising a modified fermentation process to prevent surface film formation and consequent quality degradation.

12.
ACS Appl Mater Interfaces ; 11(34): 30959-30967, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31390177

ABSTRACT

Conversion-type iron trifluoride (FeF3) has attracted considerable attention as a positive electrode material for lithium secondary batteries due to its high energy density and low cost. However, the conversion process through which FeF3 operates leads it to suffer from capacity degradation upon repeated cycling. To improve the cycle performance, in this study we investigated the degradation mechanism of conversion-type FeF3 electrode material. Bulk analyses of FeF3 upon cycling reveal incomplete oxidation to Fe3+ concomitant with the aggregation of LiF at the charged state. In addition, surface analyses of FeF3 reveal that a film covered the electrode surface after 10 cycles, which leads to a remarkable increase in resistance. We show that the choice of the electrolyte formulation is crucial in preventing the formation of the film on the electrode surface; thus, FeF3 shows better performance in an electrolyte comprising LiBF4 solute in cyclic carbonate solvents than in chain carbonate-containing LiPF6 as the electrolyte. This study underpins that a careful selection of solvent, rather than solute, is significantly essential to improve the cycle performance of the FeF3 electrode.

13.
Environ Sci Pollut Res Int ; 26(25): 25725-25732, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31267388

ABSTRACT

The tailings produce acid mine drainage (AMD) due to sulfide minerals, especially pyrite oxidation. AMD has caused serious pollution to the surrounding aquatic and terrestrial ecosystems because of its famous low pH value and high metal and sulfate concentration, which is an urgent environmental problem faced by the world's ore mining industry. Here, we show that silicic protective surface films can suppress the oxidation of pyrite-bearing tailings for AMD control at-source without pre-oxidation of pyrite and solution pH adjuster and buffer. We found that the silicic protective surface films formed by calcium silicate can inhibit the oxidation of pyrite-bearing tailings and reduce the production of AMD through chemical leaching tests. Fourier transform infrared (FTIR) analyses and scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS) confirmed the presence of silicic protective surface films of calcium silicate on the surface of pyrite-bearing tailings.


Subject(s)
Acids/chemistry , Iron/chemistry , Metals/chemistry , Minerals/chemistry , Sulfates/analysis , Sulfides/analysis , Ecosystem , Mining , Oxidation-Reduction , Sulfates/chemistry , Sulfides/chemistry
14.
ACS Appl Mater Interfaces ; 11(17): 16243-16251, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30964975

ABSTRACT

To reduce the amount of greenhouse gas emissions and remedy related environmental damage, the research on carbon capture and storage (CCS) is gaining momentum and so is the search for a more effective way to control corrosion of pipeline steel used to transport impure supercritical (SC) CO2. Herein, we prepared an electroless high-phosphorus Ni-P coating and, for the first time, systematically explored the underlying mechanism of the interfacial process in applying Ni-P coating to protect pipeline steel that transports impure SC CO2. It is found that, benefiting from the formation of a protective surface film, Ni-P coating significantly mitigates the corrosion effects from SC CO2 and impurities (e.g., O2 and NO2), especially the synergistic effect of impurities. Concurrently, it effectively avoids the localized corrosion resulting from nonuniform adsorption of the aqueous phase. Although O2 and NO2 can degrade the coating through boosting water precipitation, deteriorating the water chemistry, and reducing the surface film protectiveness, the corrosion inhibition efficiency of Ni-P coating is invariably higher than 80%, independent of the varying causticity of SC CO2 streams, demonstrating that the coating has a superior stability toward corrosion attack. The as-prepared Ni-P coating undoubtedly holds great potential as an alternative for corrosion control of CO2 transport pipeline in the CCS industry. This work provides a new, feasible method to ensure the safe and efficient operation of CCS.

15.
Mycobiology ; : 250-255, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-760534

ABSTRACT

In the present study, we aimed to determine the cause of surface film formation in three rice vinegars fermented using the traditional static fermentation method. The pH and total acidity of vinegar were 3.0–3.3 and 3.0–8.7%, respectively, and acetic acid was the predominant organic acid present. Colonies showing a clear halo on GYC medium were isolated from the surface film of all vinegars. Via 16S rDNA sequencing, all of the isolates were identified as Acetobacter pasteurianus. Furthermore, field-emission scanning electron microscopy analysis showed that the bacterial cells had a rough surface, were rod-shaped, and were ∼1 × 2 µm in size. Interestingly, cells of the isolate from one of the vinegars were surrounded with an extremely fine threadlike structure. Thus, our results suggest that formation of the surface film in rice vinegar was attributable not to external contamination, to the production of bacterial cellulose by A. pasteurianus to withstand the high concentrations of acetic acid generated during fermentation. However, because of the formation of a surface film in vinegar is undesirable from an industrial perspective, further studies should focus on devising a modified fermentation process to prevent surface film formation and consequent quality degradation.


Subject(s)
Acetic Acid , Acetobacter , Cellulose , DNA, Ribosomal , Fermentation , Hydrogen-Ion Concentration , Methods , Microscopy, Electron, Scanning
16.
ACS Appl Mater Interfaces ; 10(3): 2469-2479, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29281242

ABSTRACT

The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities rank in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes ranks in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiPF6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high-performance Li metal batteries.

17.
Water Res ; 123: 704-714, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28728109

ABSTRACT

Zero-valent aluminum (ZVAl) draws much attention due to its strong reducibility. However, under neutral pH conditions, the reduction ability of ZVAl for pollutant removal has still been suspected because of the formed compact surface film of Al-(hydr)oxide. In this study, unmodified ZVAl was employed to reductively remove aqueous pollutants over a wide pH range, and its performance and mechanism, especially at near-neutral pH, were systematically studied for the first time. Results demonstrated that ZVAl had a wide range of pH applicability from 2 to 12, even in neutral environment. Typical nitro compound nitrobenzene (NB), typical azo dye acid orange 7 (AO7), and typical inorganic heavy metal ion Cr(VI) can be effectively removed at initial pH 7. Based on the changes of pH, ORP, DO, Al ions and TOC of the reaction solution, and the determination of reduction products of NB by UV-Vis and GC-MS, we found that NB removal by ZVAl can be primarily attributed to the reduction role. NB was reduced to nitrosobenzene firstly, and to aniline finally. Meanwhile, the adsorption phenomenon existed in this system. Next, the surface reaction mechanism was deeply revealed through the characterization of ZVAl particles before and after reaction by SEM-EDS, TEM, HRTEM, XRD, and XPS. It was found that ZVAl powders with core/shell structure participated in the redox reaction, and that ZVAl core was corroded, generating Al-(hydr)oxide. ZVAl surface oxide film was not directly removed, instead of a rougher one. Finally, the proposed reductive mechanism of aqueous pollutants by ZVAl was speculated from the angle of electronic competition. In water environment, O2, H2O and pollutants, with a clear competitive relationship, can capture electrons released from ZVAl. When pollutant's opportunities for getting electrons are enhanced, efficiently reductive reactions for pollutant removal can take place, even at near-neutral pH. In a word, ZVAl is a promising material to remove aqueous pollutants over a wide pH range, even in neutral environment, which exhibits its great potential as an effective and environment-friendly agent for pollutant removal from water.


Subject(s)
Aluminum/chemistry , Water Pollutants, Chemical , Water Purification/methods , Hydrogen-Ion Concentration , Iron , Oxidation-Reduction
18.
Materials (Basel) ; 9(2)2016 Jan 25.
Article in English | MEDLINE | ID: mdl-28787870

ABSTRACT

This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...