Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.937
Filter
1.
Biofouling ; : 1-13, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991845

ABSTRACT

Microbial fouling involves the physicochemical interactions between microorganisms and solid surfaces. An electromagnetic field (EMF) may change the diffusion rates of microbial cells and the electrical double layer around the cells and contacting surfaces. In the current study, polycardanol exhibiting antibiofouling activity was modified with ferromagnetic iron oxide (IO) to investigate the EMF effects on bacterial adhesion. When there was a flow of electrolyte that contained bacterial cells, flow-induced EMF was generated according to Faraday's principle. It was observed that the IO-ionic solution (IS)-modified surfaces, with an induced current of 44, 53, 66 nA, showed decreases in the adhesion of bacteria cells more than the unmodified (polycardanol) and IO-nanoparticles-modified ones. In addition to the EMF effects, the nano-scale uniform roughness of the modified surfaces appeared to play an important role in the reduction of cell adhesion. The results demonstrated that the IOIS-modified surface (3.2 × 10-6 mM IO) had the highest antibiofouling activity.

2.
J Mech Behav Biomed Mater ; 157: 106645, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38963999

ABSTRACT

In a technological context where, thanks to the additive manufacturing techniques, even sophisticated geometries as well as surfaces with specific micrometric features can be realized, we propose a mechano-regulation algorithm to determine the optimal microgeometric parameters of the surface of textured titanium devices for biomedical applications. A poroelastic finite element model was developed including a portion of bone, a portion of a textured titanium device and a layer of granulation tissue separating the bone from the device and occupying the space between them. The algorithm, implemented in the Matlab environment, determines the optimal values of the root mean square and the correlation length that the device surface must possess to maximize bone formation in the gap between the bone and the device. For low levels of compression load acting on the bone, the algorithm predicts low values of root mean square and high values of correlation length. Conversely, high levels of load require high values of root mean square and low values of correlation length. The optimal microgeometrical parameters were determined for various thickness values of the granulation tissue layer. Interestingly, the predictions of the proposed computational model are consistent with the experimental results reported in the literature. The proposed algorithm shows promise as a valuable tool for addressing the demands of precision medicine. In this approach, the device or prosthesis is no longer designed solely based on statistical averages but is tailored to each patient's unique anthropometric characteristics, as well as considerations related to their metabolism, sex, age, and more.

3.
BMC Oral Health ; 24(1): 765, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970080

ABSTRACT

OBJECTIVE: To determine the effects of conventional cigarette smoking (CS) and recent heated tobacco products (HTPs) on the surface roughness and color stability of different indirect restorative materials. MATERIALS AND METHODS: One hundred disc-shaped samples were constructed of three different restorative CAD/CAM materials: lithium disilicate glass-ceramic (IPS e.max CAD; Ivoclar Vivadent, Liechtenstein), zirconia (BruxZir® Zirconia, Glidewell, USA) and polyetheretherketone (BioHPP® bredent GmbH, Germany). Of the IPS e.max CAD and the Bruxzir samples, 20 samples were glazed, and 20 samples were polished, while the BioHPP samples were all polished according to the manufacturer's instructions. Fifty samples were subjected to conventional cigarette smoking (LM, Philip Morris International Inc., Egypt) (Groups: IPS e.max CAD_Glazed exposed to CS (LD_G_Cig), IPS e.max CAD_Polished exposed to CS (LD_P_Cig), Bruxzir_Glazed exposed to CS (Zr_G_Cig), Bruxzir _Polished exposed to CS (Zr_P_Cig) and BioHPP exposed to CS (PEEK_Cig) and fifty samples were exposed to heated tobacco product smoking (Heets, Russet selection, Philip Morris International Inc., Italy) (Groups: IPS e.max CAD_Glazed exposed to HTP (LD_G_HTP), IPS e.max CAD_Polished exposed to HTP (LD_P_HTP), Bruxzir_Glazed exposed to HTP (Zr_G_HTP), Bruxzir CAD_Polished exposed to HTP (Zr_P_HTP) and BioHPP exposed to HTP (PEEK_HTP).. Six hundred cigarettes/heets representing 30 days of medium smoking behavior (20 cigarettes/day) were used. Before and after exposure to smoke, the surface roughness of all the samples was measured using JITAI8101 surface roughness tester (Beijing Jitai Tech Detection Device Co., Ltd, China, and the color parameters were assessed using VITA Easyshade Advance 4.01 (VITA shade, VITA made, VITA). The data were analyzed using One-way ANOVA, paired sample t-test and independent sample t-test. The significance level was set at α < 0.05. The surface topography was evaluated by scanning electron microscopy (SEM) and analyzed using energy-dispersive X-ray (EDX) spectroscopy to determine changes in the surface chemical composition. RESULTS: Both types of smoking caused significant increases in the surface roughness of all the samples. There was a significant difference in color change between CS and HTP for all materials with different surface finish (P < 0.01) and zirconia had the greatest effect on color change (P < 0.001). In contrast, polyetheretherketone (PEEK) "BioHPP" had the least effect (P < 0.001). CONCLUSION: Exposure to different types of smoking induce changes in the surface topography and color of different esthetic restorative materials. Compared with HTP, conventional cigarette smoke has a greater effect on the surface roughness and color stability of esthetic restorative materials. The glazed surfaces showed less change in surface topography than did the polished surfaces. Zirconia showed better color stability when compared to polyetheretherketone (PEEK).


Subject(s)
Ceramics , Cigarette Smoking , Computer-Aided Design , Dental Materials , Dental Porcelain , Ketones , Polyethylene Glycols , Polymers , Surface Properties , Tobacco Products , Zirconium , Polyethylene Glycols/chemistry , Zirconium/chemistry , Tobacco Products/adverse effects , Ceramics/chemistry , Ketones/chemistry , Dental Porcelain/chemistry , Cigarette Smoking/adverse effects , Dental Materials/chemistry , Benzophenones , Materials Testing , Hot Temperature , Humans , Color , Dental Restoration, Permanent
4.
J Esthet Restor Dent ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963682

ABSTRACT

OBJECTIVE: To evaluate the effect of the deterioration of computer aided design/computer aided manufacturing (CAD/CAM) burs during zirconia milling, on surface roughness, contact angle, and fibroblast viability. MATERIALS AND METHODS: Ceramic blocks were milled and 75 ceramic disks (8 × 1.5 mm) made and allocated into three groups (n = 25): G1-brand new 2L and 1L burs, G2-2L bur at the end of lifetime and brand new 1L bur and G3-both burs at the end of their lifetimes. Roughness (Ra, Rq, and Rz) was evaluated using a 3D optical profilometer, the contact angle by the sessile drop method and the cell viability of the mouse NIH/3T3 fibroblast, using the Alamar Blue assay at intervals of 24, 48, and 72 h (ISO 10993-5). Data were analyzed by one-way ANOVA and Kruskal-Wallis tests (p ≤ 0.05). RESULTS: Roughness increased as the burs deteriorated and G3 (0.27 ± 0.04) presented a higher value for Ra (p < 0.001). The highest contact angle was observed in G3 (86.2 ± 2.66) when compared with G1 (63.7 ± 12.49) and G2 (75.3 ± 6.36) (p < 0.001). Alamar Blue indicated an increase in cell proliferation, with no significant differences among the groups at 24 and 72 h (p > 0.05). CONCLUSIONS: The deterioration of the burs increased the surface roughness and decreased the wettability, but did not interfere in cell viability and proliferation. CLINICAL SIGNIFICANCE: The use of custom zirconia abutments represents an effective strategy for single crowns restorations. Our findings suggest that these abutments can be efficiently milled using CAD/CAM burs within their recommended lifetime.

5.
Sci Rep ; 14(1): 15439, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965301

ABSTRACT

Replacing the conventional endodontic irrigants with herbal agents could avoid complications associated with using sodium hypochlorite (NaOCl). Endodontic irrigants alter the surface roughness of the dentinal wall surface, which affects sealer mechanical retention. This study aimed to assess the effect of experimental herbal Moringa oleifera and orange peel extract irrigant on intraradicular dentin (IRD) surface roughness using quantitative 3D surface analysis by scanning electron microscopy (SEM) regarding the smear layer assessment. Sixty human root sections were divided into four groups (n = 15): NaOCl combined with 17% ethylenediaminetetraacetic acid (EDTA); negative control (saline); moringa extract (MO); and orange oil (OO). SEM images were assessed quantitatively for surface roughness (Ra) in the coronal, middle, and apical IRD. The data were analysed by Kruskal-Wallis, Friedman, and Dunn's tests. All groups showed statistically significant differences (P = 0.007). MO exhibited significantly greater Ra values at the coronal, middle, and apical root levels than OO (P = 0.007, 0.009, and 0.046, respectively). There was no significant change in Ra values at various root levels within each group at P = 0.091, 0.819, 0.819, and 0.549 for the EDTA, saline, MO, and OO groups. Considerable (IRD) surface roughness analysis makes Moringa extract a promising herbal endodontic irrigant alternative to the NaOCl plus EDTA regimen.


Subject(s)
Dentin , Microscopy, Electron, Scanning , Plant Extracts , Root Canal Irrigants , Sodium Hypochlorite , Surface Properties , Humans , Root Canal Irrigants/pharmacology , Dentin/drug effects , Surface Properties/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Moringa oleifera/chemistry , Edetic Acid/pharmacology , Edetic Acid/chemistry , Citrus sinensis/chemistry , Tooth Root/drug effects
6.
Sci Rep ; 14(1): 15911, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987571

ABSTRACT

In order to develop a method for the production of crack-free cladding layers, we combined surface texturing technology with laser cladding, establishing a multi-field coupled numerical simulation model. A separate investigation was conducted into the temperature, stress, and fluid fields in laser cladding processes with and without texturing, seeking optimal cladding parameters, and conducted experiments. The results of the numerical simulations indicate that pre-set texturing effectively reduces the temperature gradient during the cladding process, thereby making the thermal cycle curve smoother. The residual stresses in the X, Y, and Z directions are reduced by 34.84%, 3.94%, and 50.22%, respectively. The introduction of texturing reduces the internal flow velocity of the melt pool, preventing the occurrence of a double vortex effect. Experimental results show that the residual stresses in the X, Y, and Z directions of the predefined textured cladding layer are reduced by approximately 41%, 8%, and 47%, respectively, compared to the non-textured cladding layer. This effectively improves the surface roughness and internal grain size of the cladding layer, with no significant defects at the metallurgical bonding positions, providing a reference for future improvements in cladding layer quality.

7.
Clin Oral Investig ; 28(7): 371, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869697

ABSTRACT

OBJECTIVES: The purpose of this study is to evaluate the bond strength of different computer-aided design / computer-aided manufacturing (CAD/CAM) hybrid ceramic materials following different pretreatments. METHODS: A total of 306 CAD/CAM hybrid material specimens were manufactured, n = 102 for each material (VarseoSmile Crownplus [VSCP] by 3D-printing; Vita Enamic [VE] and Grandio Blocs [GB] by milling). Each material was randomly divided into six groups regarding different pretreatment strategies: control, silane, sandblasting (50 µm aluminum oxide particles), sandblasting + silane, etching (9% hydrofluorics acid), etching + silane. Subsequently, surface roughness (Ra) values, surface free energy (SFE) were measured. Each specimen was bonded with a dual-cured adhesive composite. Half of the specimens were subjected to thermocycling (5000 cycles, 5-55 °C). The shear bond strength (SBS) test was performed. Data were analyzed by using a two-way analysis of variance, independent t-test, and Mann-Whitney-U-test (α = 0.05). RESULTS: Material type (p = 0.001), pretreatment strategy (p < 0.001), and the interaction (p < 0.001) all had significant effects on Ra value. However, only etching on VSCP and VE surface increased SFE value significantly. Regarding SBS value, no significant difference was found among the three materials (p = 0.937), while the pretreatment strategy significantly influenced SBS (p < 0.05). Etching on VSCP specimens showed the lowest mean value among all groups, while sandblasting and silane result in higher SBS for all test materials. CONCLUSIONS: The bond strength of CAD/CAM hybrid ceramic materials for milling and 3D-printing was comparable. Sandblasting and silane coupling were suitable for both millable and printable materials, while hydrofluoric etching should not be recommended for CAD/CAM hybrid ceramic materials. CLINICAL RELEVANCE: Since comparable evidence between 3D-printable and millable CAD/CAM dental hybrid materials is scarce, the present study gives clear guidance for pretreatment planning on different materials.


Subject(s)
Computer-Aided Design , Crowns , Dental Bonding , Dental Stress Analysis , Materials Testing , Shear Strength , Surface Properties , Dental Bonding/methods , Ceramics/chemistry , Silanes/chemistry , Dental Materials/chemistry , Dental Etching/methods , Dental Porcelain/chemistry , In Vitro Techniques , Humans
8.
Materials (Basel) ; 17(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930168

ABSTRACT

Fiber laser cutting machines are widely used in industry for cutting various sheet metals. Hardox steel is widely used in the construction of machinery and equipment that are subjected to wear and impact due to its anti-wear properties and good impact resistance. In this experimental study, the effect of input parameters including laser output power (LOP), laser-cutting speed (LCS), and focal point position (FPP) of fiber laser on the surface roughness and kerf width of Hardox 400 steel sheets are studied. In addition, the optimization of input parameters to achieve the desired surface roughness and kerf width are investigated and analyzed using the response surface methodology (RSM). The experiments are performed using a 4 kW fiber laser-cutting machine and the output results including surface roughness and kerf width are measured using roughness meters and optical microscope. The results of the analysis of variance (ANOVA) for surface roughness and kerf width show that the FPP and LCS are the most significant process parameters affecting the surface roughness and kerf width. With a positive focal point, the surface roughness decreases while the kerf width increases. With increasing the laser-cutting speed, both the surface roughness and kerf width decrease.

9.
Materials (Basel) ; 17(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930344

ABSTRACT

Nanocrystalline diamond (NCD) films are attractive for many applications due to their smooth surfaces while holding the properties of diamond. However, their growth rate is generally low using common Ar/CH4 with or without H2 chemistry and strongly dependent on the overall growth conditions using microwave plasma chemical vapor deposition (MPCVD). In this work, incorporating a small amount of N2 and O2 additives into CH4/H2 chemistry offered a much higher growth rate of NCD films, which is promising for some applications. Several novel series of experiments were designed and conducted to tailor the growth features of NCD films by fine-tuning of the gas-phase compositions with different amounts of nitrogen and oxygen addition into CH4/H2 gas mixtures. The influence of growth parameters, such as the absolute amount and their relative ratios of O2 and N2 additives; substrate temperature, which was adjusted by two ways and inferred by simulation; and microwave power on NCD formation, was investigated. Short and long deposition runs were carried out to study surface structural evolution with time under identical growth conditions. The morphology, crystalline and optical quality, orientation, and texture of the NCD samples were characterized and analyzed. A variety of NCD films of high average growth rates ranging from 2.1 µm/h up to 6.7 µm/h were successfully achieved by slightly adjusting the O2/CH4 amounts from 6.25% to 18.75%, while that of N2 was kept constant. The results clearly show that the beneficial use of fine-tuning of gas-phase compositions offers a simple and effective way to tailor the growth characteristics and physical properties of NCD films for optimizing the growth conditions to envisage some specific applications.

10.
Micromachines (Basel) ; 15(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38930637

ABSTRACT

Ultrasonic vibration has been employed to assist in turning, introducing intermittent machining to reduce average cutting force, minimize tool wear, and enhance machining efficiency, thereby improving surface roughness. However, achieving intermittent cutting necessitates specific conditions, with a cutting speed or feed rate falling below the critical speed associated with the ultrasonic vibration parameters. This study presents a theoretical model for surface formation in cutting-speed-direction ultrasonic-assisted turning (CUAT), covering both continuous and intermittent machining regimes. Experimental validation was conducted on C45 carbon steel and 201 stainless steel to demonstrate the applicability of the theoretical model across different materials. Digital microscope analysis revealed 3D topography consistency with the theoretical formula. Surface roughness evaluations were performed for both CUAT and CT (conventional turning) methods. The results indicated a significant reduction in roughness Ra for C45 steel samples machined with CUAT, up to 80% compared to CT at a cutting speed of 20 m/min, while only exhibiting slight fluctuations when turning 201 stainless steel. Detailed analysis and explanation of these phenomena are presented herein.

11.
Micromachines (Basel) ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38930677

ABSTRACT

Tungsten carbide (WC) and its composites are typically associated with high hardness and high wear resistance, posing challenges in conventional machining processes like turning. To address the machining difficulties of WC-Co, electrical discharge turning (EDT) was proposed. The rotational speed in EDT is a key factor influencing the machining results; however, conflicting reports exist about its impact on the EDT process. Therefore, the effect of rotational speed on three different machining regimes, including roughing, semi-finishing, and finishing, was investigated using energy-dispersive X-ray spectroscopy (EDX), SEM, and roughness tests. Additionally, elemental mapping was applied to illustrate the element distribution on the machined surface. The results indicated that increasing the rotational speed led to a 10% to 17% decrease in the recast layer thickness and a 14% to 54% reduction in the surface roughness (Ra).

12.
Polymers (Basel) ; 16(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932075

ABSTRACT

The mechanical properties of textile materials play a crucial role in determining their comfort, functionality, performance, safety, and aesthetics. Understanding and optimizing these properties is essential to meet consumer demands. Key aspects of mechanical properties, such as surface roughness, abrasion resistance, and compression, have a significant impact on the touch and durability of the material, as demonstrated by various research studies. This study focuses on analyzing the mechanical properties of materials produced of different polymer yarns and their changes under combined aging factors. The findings emphasize the significance of textile abrasion resistance and surface roughness measurement, particularly for aged materials. Although the use of recycled polyester yarn is sustainable and offers advantages such as higher tensile strength, the results have shown that the use of conventional polyester yarn is more advantageous overall as it has higher abrasion resistance, a smoother surface texture, and better elasticity retention after aging. The insights presented are vital for designing high-performance sportswear, which is crucial in today's competitive environment.

13.
J Pharm Bioallied Sci ; 16(Suppl 2): S1566-S1573, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882736

ABSTRACT

Aim of the Study: The aim of this in vitro study was to evaluate the effect of the resin infiltration technique and remineralization of induced enamel caries with fluoride solution on the color masking of white spot lesions and surface roughness. Materials and Methods: A total of 45 sound teeth were used in this study. All the teeth were sectioned along the long axes into two halves, lingual and buccal to get 90 specimens. All specimens were immersed in a demineralized solution for 7 days. The specimens were divided randomly into three equal groups (n = 30) according to the type of treatment; Group 1 (n = 30) was treated with fluoride varnish (Clinpro); Group 2 (n = 30) was treated by resin infiltration (Icon); and Group 3 (n = 30) was used as a control group with no treatment. The color and surface roughness were measured three times at baseline (T1), directly after induction of artificial white spot lesions (WSLs) (T2), and directly after application of the treatment options (T3). The colors were measured using a portable reflective spectrophotometer and the 3D surface roughness was measured using a Light Sectioning Vision System. Data were collected and statistically analyzed using T test and Mann-Whitney U test. The Results: Surface roughness was almost equal in the study groups with no statistically significant differences reported. Icon showed slightly higher color scores than that of ClinPro. Conclusions: The Icon produced favorable esthetic results compared to the fluoride therapy while no significant differences were reported regarding the surface roughness.

14.
Materials (Basel) ; 17(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893741

ABSTRACT

Injection molding technology is widely utilized across various industries for its ability to fabricate complex-shaped components with exceptional dimensional accuracy. However, challenges related to injection quality often arise, necessitating innovative approaches for improvement. This study investigates the influence of surface roughness on the efficiency of conformal cooling channels produced using additive manufacturing technologies, specifically Direct Metal Laser Sintering (DMLS) and Atomic Diffusion Additive Manufacturing (ADAM). Through a combination of experimental measurements, including surface roughness analysis, scanning electron microscopy, and cooling system flow analysis, this study elucidates the impact of surface roughness on coolant flow dynamics and pressure distribution within the cooling channels. The results reveal significant differences in surface roughness between DMLS and ADAM technologies, with corresponding effects on coolant flow behavior. Following that fact, this study shows that when cooling channels' surface roughness is lowered up to 90%, the reduction in coolant media pressure is lowered by 0.033 MPa. Regression models are developed to quantitatively describe the relationship between surface roughness and key parameters, such as coolant pressure, Reynolds number, and flow velocity. Practical implications for the optimization of injection molding cooling systems are discussed, highlighting the importance of informed decision making in technology selection and post-processing techniques. Overall, this research contributes to a deeper understanding of the role of surface roughness in injection molding processes and provides valuable insights for enhancing cooling system efficiency and product quality.

15.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893837

ABSTRACT

Welded tuffs have a wide range of welding degrees and show significant variability in mechanical behavior. However, the detailed influence of welding degree on the meso-mechanical behavior of welded tuffs remains unclear. Based on petrographic and pore-structure analysis, we conducted a series of meso-mechanical experiments on weakly to strongly welded tuffs by utilizing a mesoscale real-time loading-observation-acquisition system. The results indicated that the strongly and weakly welded tuffs showed a small range in mineralogical composition and porosity, while the meso-mechanical behavior exhibited significant variability. Strongly welded tuffs showed lower uniaxial compression strength, weaker mechanical anisotropy, and smaller fracture surface roughness. In contrast, weakly welded tuffs exhibited higher uniaxial compression strength, stronger mechanical anisotropy, and rougher fracture surface roughness. Welded tuffs with strong packing and welding of glass shards tended to have fractures propagating along the maximum principal direction, while those with weak packing and welding of glass shards may have had failure along the alignment of glass shards. The influence of welding degree on the meso-mechanical behavior of welded tuffs probably originates from their diagenesis environments, mainly depending on the combined effect of the pyroclastic properties and pseudo-rhyolitic structure. The findings reveal the meso-mechanical differences of welded tuffs and shed light on improving tuffs for stable and durable construction.

16.
Materials (Basel) ; 17(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893903

ABSTRACT

Among various metal additive manufacturing (AM) technologies, L-PBF is known for fabricating intricate components. However, due to step edges and powder particle attachments, attaining a good surface finish is challenging, especially on downskin surfaces. Contour scanning has potential to improve surface quality because such scanning may dominate the surface formation of sloped features. This study evaluates the effects of pre- and post-contouring strategies on the sloped downskin surfaces fabricated using a commercial L-PBF system with Ti6Al4V powder. L-PBF parts printed at inclination angles 30°, 45° and 60° were investigated. A double-contouring approach with varying processing conditions was employed and surface characteristics were analyzed using data acquired by white light interferometry. The average surface roughness, Sa, surface skewness, Ssk, and percentage area of powder particles attached onto surfaces were statistically evaluated. The lowest Sa obtained for pre- and post-contoured samples is 14.08 µm and 18.88 µm, respectively. For both strategies, the combination of a low laser power and a high scan speed on the interface of downskin surface and underneath powder results in smoother surfaces. However, while comparing both strategies, pre-contouring gives better surface finish for samples built at similar processing conditions, with a difference of nearly 5 µm in Sa.

17.
Materials (Basel) ; 17(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893934

ABSTRACT

The present work is aimed at studying the effects of the magnetorheological finishing process, using a low-frequency alternating magnetic field, on the finishing performance of 6063 aluminum alloy. The study investigates the influence of key excitation parameters such as current, frequency, excitation gap, and iron powder diameter on the material removal and surface roughness (Ra) of the finished workpiece by experiments. This study employs a single-factor experimental method, and the finish surface is analyzed by a Zigo non-contact white light interferometer. The magnetic field strength in the processing area increases with the increase in the excitation current and decreases with the increase in the excitation gap. When the current frequency is set to 1 Hz, the circulation and renewal of abrasives in the magnetic cluster is most sufficient, resulting in the optimal surface roughness value for the workpiece. According to the experimental results of the excitation parameters, more suitable process parameters were selected for a two-stage finishing experiment. The surface roughness of 6063 aluminum alloy was improved from 285 nm to 3.54 nm. Experimental results highlighted that the magnetorheological finishing using a low-frequency alternating magnetic field is a potential technique for obtaining nano-scale finishing of the 6063 aluminum alloy.

18.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894412

ABSTRACT

Surface roughness is one of the main bases for measuring the surface quality of machined parts. A large amount of training data can effectively improve model prediction accuracy. However, obtaining a large and complete surface roughness sample dataset during the ultra-precision machining process is a challenging task. In this article, a novel virtual sample generation scheme (PSOVSGBLS) for surface roughness is designed to address the small sample problem in ultra-precision machining, which utilizes a particle swarm optimization algorithm combined with a broad learning system to generate virtual samples, enriching the diversity of samples by filling the information gaps between the original small samples. Finally, a set of ultra-precision micro-groove cutting experiments was carried out to verify the feasibility of the proposed virtual sample generation scheme, and the results show that the prediction error of the surface roughness prediction model was significantly reduced after adding virtual samples.

19.
Polymers (Basel) ; 16(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891479

ABSTRACT

The kinetic roughening of polymer films grown by vapor deposition polymerization was analyzed using the widely accepted classification framework of "generic scaling ansatz" given for the structure factor. Over the past two decades, this method has played a pivotal role in classifying diverse forms of dynamic scaling and understanding the mechanisms driving interface roughening. The roughness exponents of the polymer films were consistently determined as α=1.25±0.09, αloc=0.73±0.02, and αs=0.99±0.06. However, the inability to unambiguously assign these roughness exponent values to a specific scaling subclass prompts the proposal of a practical alternative. This report illustrates how all potential dynamic scaling can be consistently identified and classified based on the relationship between two temporal scaling exponents measured in real space: the average local slope and the global slope of the interface. The intrinsic anomalous roughening class is conclusively assigned to polymer film growth characterized by anomalous "native (background slope-removed) local height fluctuations". Moreover, the new analysis reveals that interfaces exhibiting anomalous scaling, previously classified as intrinsic anomalous roughening, could potentially belong to the super-rough class, particularly when the spectral roughness exponent αs is equal to 1.

20.
Heliyon ; 10(11): e31849, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845963

ABSTRACT

Ultra-precision turning is a crucial process in the manufacturing industry as it helps to produce parts with high dimensional accuracy, surface finish, and tolerance. The process is similar to traditional turning but is carried out under special circumstances to achieve greater precision and surface finish. The process can be applied to conventional structural materials, but the demand for machining hardened steels is increasing. The optimization of ultra-precision turning of AISI D2 using cubic boron nitride (CBN) tools is a crucial aspect in the field of high-quality machining. This study aims to evaluate the performance of the process and identify the optimal parameters that result in the best quality components while using a CBN tool's ultra-precision turning of AISI D2. Ultra-precision turning process factors such as cutting speed, feed, and depth of cut were experimentally investigated to enhance the response output, such as surface roughness and cutting force components. The full factorial experimental design was used for determining the process characteristics under different conditions, and experimental results were applied to search for the optimum response of machining performance. The optimization process was done by combining the hybrid genetic algorithm-response surface methodology (GA-RSM) and the Taguchi-grey relational analysis (GRA) statistical tools. These methods are useful in situations where the relationship between the input variables and the output responses is complex and non-linear. The results showed that a hybrid GA-RSM approach, combined with Taguchi-GRA statistical analysis, can effectively find optimal process parameters, leading to the best combination of surface roughness and cutting force. In hybrid Taguchi - GRA, the optimal cutting conditions were found to be a cutting speed of 175 m/min, a feed of 0.025 mm, and a depth of cut of 0.06 mm. The findings of this study provide valuable insights for the optimization of ultra-precision CBN turning operations, contribute to the development of precision manufacturing technology, and can be used as a reference for similar machining processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...