Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.668
Filter
1.
Small ; : e2403581, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030883

ABSTRACT

This work pioneers to combine fast self-assembly of polyhedral oligomeric silsesquioxanes (POSS) nanocage-based giant surfactants with high etching contrast and directed self-assembly for reliable long-range lateral order to create well-aligned sub-10 nm line nanopatterns via reactive ion etching (RIE). Polystyrene-block-oligo(dimethylsiloxane) substituted POSS (PS-b-oDMS7POSS) with seven oligo(dimethylsiloxane) at the corners of the POSS nanocage and one polystyrene (PS) tail is designed and synthesized as a giant surfactant with self-assembly behaviors like block copolymer (BCP). In contrast to BCP, oDMS7POSS gives a volume-persistent "nanoatom" particle with higher mobility for fast self-assembly and higher segregation strength with PS for smaller feature size. By taking advantage of directed self-assembly using nano-trench fabricated by electron beam lithography, well-ordered nanostructured monolayer with well-aligned parallel oDMS7POSS cylinders can be formed by confined self-assembly within the nano-trench. With the optimization of the RIE treatment using O2 as an etchant, the high etching contrast from the oDMS7POSS and PS gives the formation of well-defined line nanopatterns with sub-10 nm critical dimension that can serve as a mask for pattern transfer in lithography. These results demonstrate a cost-effective approach for nanopatterning by utilizing a creatively designed giant surfactant with sub-10 nm feature size and excellent etching contrast for modern lithographic applications.

2.
Front Pediatr ; 12: 1411068, 2024.
Article in English | MEDLINE | ID: mdl-39049843

ABSTRACT

Background: Bedside lung ultrasonography has been widely used in neonatal intensive care units (NICUs). Lung ultrasound scores (LUS) may predict the need for pulmonary surfactant (PS) application. PS replacement therapy is the key intervention for managing moderate to severe neonatal respiratory distress syndrome (NRDS), with early PS administration playing a positive role in improving patient outcomes. Lung ultrasonography aids in the prompt diagnosis of NRDS, while LUS offers a semi-quantitative assessment of lung health. However, the specific methodologies for utilizing LUS in clinical practice remain controversial. This study hypothesizes that, in very preterm infants [<32 weeks gestational age (GA)] exhibiting respiratory distress symptoms, determining PS application through early postnatal LUS combined with clinical indicators, as opposed to relying solely on clinical signs and chest x-rays, can lead to more timely PS administration, reduce mechanical ventilation duration, improve patient outcomes, and lower the occurrence of bronchopulmonary dysplasia (BPD). Methods and design: This is a protocol for a prospective, non-blinded, randomized controlled trial that will be conducted in the NICU of a hospital in China. Eligible participants will include very preterm infants (< 32 weeks GA) exhibiting signs of respiratory distress. Infants will be randomly assigned in a 1:1 ratio to either the ultrasound or control group. In the ultrasonography group, the decision regarding PS administration will be based on a combination of lung ultrasonography and clinical manifestations, whereas in the control group, it will be determined solely by clinical signs and chest x-rays. The primary outcome measure will be the mechanical ventilation duration. Statistical analysis will employ independent sample t-tests with a significance level set at α = 0.05 and a power of 80%. The study requires 30 infants per group (in total 60 infants). Results: This study aims to demonstrate that determining PS application based on a combination of LUS and clinical indicators is superior to traditional approaches. Conclusions: This approach may enhance the accuracy of NRDS diagnosis and facilitate early prediction of PS requirements, thereby reducing the duration of mechanical ventilation. The findings of this research may contribute valuable insights into the use of LUS to guide PS administration.

3.
J Chromatogr A ; 1730: 465160, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39025027

ABSTRACT

A moment analysis method was developed for the study of solute permeation at the interface of spherical molecular aggregates. At first, new moment equations were developed for determining the partition equilibrium constant (Kp) and permeation rate constants (kin and kout) of solutes from the first absolute (µ1A) and second central (µ2C) moments of elution peaks measured by using high-performance liquid chromatography (HPLC). Then, the method was applied to the analysis of mass transfer phenomena of three solutes, i.e., hydroquinone, resorcinol, and catechol, at the interface of sodium dodecylsulfate (SDS) micelles. HPLC data were measured by using an ODS column and an aqueous phosphate buffer solution (pH = 7.0) as the mobile phase solvent. Pulse response experiments were conducted while changing SDS concentration (5 - 20 mmol dm-3) in the mobile phase under the conditions that the surface of ODS stationary phase was dynamically coated by SDS monomers. In order to demonstrate the effectiveness of the moment analysis method using HPLC, the values of Kp, kin, and kout were determined for the three solutes as 35 - 69, 2.4 × 10-8 - 1.4 × 10-6 m s-1, and 7.0 × 10-10 - 2.1 × 10-8 m s-1, respectively. Their values increase with an increase in the hydrophobicity of the solutes. The method has some advantages for the study of interfacial solute permeation of molecular aggregates. For example, neither immobilization nor chemical modification of both solute molecules and molecular aggregates is required when elution peaks are measured by using HPLC. Interfacial solute permeation takes place in the mobile phase without any chemical reaction or physical action on molecular aggregates. The values of Kp, kin, and kout were analytically determined from those of µ1A and µ2C by using the moment equations. The results of this study must contribute to the dissemination of an opportunity for studying the interfacial solute permeation of molecular aggregates to many researchers because of extremely high versatility of HPLC.

4.
Cell Mol Life Sci ; 81(1): 287, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970705

ABSTRACT

Lung type 2 pneumocytes (T2Ps) and alveolar macrophages (AMs) play crucial roles in the synthesis, recycling and catabolism of surfactant material, a lipid/protein fluid essential for respiratory function. The liver X receptors (LXR), LXRα and LXRß, are transcription factors important for lipid metabolism and inflammation. While LXR activation exerts anti-inflammatory actions in lung injury caused by lipopolysaccharide (LPS) and other inflammatory stimuli, the full extent of the endogenous LXR transcriptional activity in pulmonary homeostasis is incompletely understood. Here, using mice lacking LXRα and LXRß as experimental models, we describe how the loss of LXRs causes pulmonary lipidosis, pulmonary congestion, fibrosis and chronic inflammation due to defective de novo synthesis and recycling of surfactant material by T2Ps and defective phagocytosis and degradation of excess surfactant by AMs. LXR-deficient T2Ps display aberrant lamellar bodies and decreased expression of genes encoding for surfactant proteins and enzymes involved in cholesterol, fatty acids, and phospholipid metabolism. Moreover, LXR-deficient lungs accumulate foamy AMs with aberrant expression of cholesterol and phospholipid metabolism genes. Using a house dust mite aeroallergen-induced mouse model of asthma, we show that LXR-deficient mice exhibit a more pronounced airway reactivity to a methacholine challenge and greater pulmonary infiltration, indicating an altered physiology of LXR-deficient lungs. Moreover, pretreatment with LXR agonists ameliorated the airway reactivity in WT mice sensitized to house dust mite extracts, confirming that LXR plays an important role in lung physiology and suggesting that agonist pharmacology could be used to treat inflammatory lung diseases.


Subject(s)
Homeostasis , Liver X Receptors , Macrophages, Alveolar , Pneumonia , Pulmonary Surfactants , Signal Transduction , Animals , Liver X Receptors/metabolism , Liver X Receptors/genetics , Pulmonary Surfactants/metabolism , Mice , Pneumonia/metabolism , Pneumonia/pathology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Mice, Knockout , Lung/metabolism , Lung/pathology , Alveolar Epithelial Cells/metabolism , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Cholesterol/metabolism , Lipid Metabolism , Phagocytosis
5.
ACS Appl Mater Interfaces ; 16(29): 38083-38091, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38986045

ABSTRACT

Both the catalyst and electrolyte deeply impact the performance of the carbon dioxide reduction reaction (CO2RR). It remains a challenge to design the electrolyte compositions for promoting the CO2RR. Here, typical anionic surfactants, dodecylphosphonic acid (DDPA) and its analogues, are employed as electrolyte additives to tune the catalysis interface where the CO2RR occurs. Surprisingly, the anionic surfactant-tailored interfacial microenvironment enables a set of typical commercial catalysts for the CO2RR to deliver a significantly enhanced selectivity of carbon products in both neutral and acidic electrolytes. Mechanistic studies disclose that the DDPA addition restructures the interfacial hydrogen-bond environment via increasing the weak H-bonded water, thus promoting the CO2 protonation to CO. Specifically, in an H-type cell, the Faradaic efficiency of CO increases from 70 to 98% at -1.0 V versus the reversible hydrogen electrode. Furthermore, in a flow cell, the DDPA-containing electrolyte maintains over 90% FECO from 50-400 mA cm-2. Additionally, this electrolyte modulation strategy can be extended to acidic CO2RR with a pH of 1.5-3.5.

6.
Chemistry ; : e202402031, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039574

ABSTRACT

Amorphous photocatalysts are characterized by numerous grain boundaries and abundant unsaturated sites, which enhance reaction efficiency from both kinetic and thermodynamic perspectives. However, amorphization strategies have rarely been used for photocatalytic CO2 reduction. Doping copper onto a metal-organic framework (MOF) surface can regulate the electronic structure of photocatalysts, promote electron transfer from the MOF to Cu, and improve the separation efficiency of electron-hole pairs. In this study, an amorphous photocatalyst MOFw-p/Cu containing highly dispersed Cu (0, I, II) sites was designed and synthesized by introducing a regulator and in situ copper species during the nucleation process of MOF (UiO-66-NH2). Various characterizations confirmed that the Cu species were anchored to the organometallic skeleton of the surface amorphization MOF structure. The synergistic effect of Cu doping and surface amorphization in MOFw-p/Cu can significantly enhance the CO and CH4 yields while promoting the formation of the multicarbon product C2H4. The approach holds promise for developing novel, highly efficient MOFs as photocatalysts for CO2 photoreduction, enabling the production of high-value-added C2 products.

7.
Heliyon ; 10(13): e33499, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040228

ABSTRACT

Pulmonary surfactant is essential for maintaining proper lung function. Alveolar epithelial type II (AE2) cells secrete surfactants via lamellar bodies (LBs). In tidal loading during each breath, the physiological cyclic stretching of AE2 cells promotes surfactant secretion. Excessive stretching inhibits surfactant secretion, which is considered to contribute to the development of lung damage. However, its precise mechanism remains unknown. This study tested whether actin polymerization and intracellular transport are required for pulmonary surfactant secretion and the association of actin polymerization and transport in identical human AE2-derived A549 cells using live-cell imaging, not in the bulk cells population. We found that overstretching approximately doubled actin polymerization into filaments (F-actin) and suppressed LB secretion by half in the fluorescent area ratio, compared with physiological stretching (F-actin: 1.495 vs 0.643 (P < 0.01); LB: 0.739 vs 0.332 (P < 0.01)). An inhibitor of actin polymerization increased LB secretion. Intracellular tracking using fluorescent particles revealed that cyclic stretching shifted the particle motion perpendicularly to the direction of stretching according to the orientation of the F-actin (proportion of perpendicular axis motion prior particle: 0h 40.12 % vs 2h 63.13 % (P < 0.01)), and particle motion was restricted over time in the cells subjected to overstretching, indicating that overstretching regulates intracellular transport dynamics (proportion of stop motion particle: 0h 1.01 % vs 2h 11.04 % (P < 0.01)). These findings suggest that overstretching changes secretion through the cytoskeleton: overstretching AE2 cells inhibits pulmonary surfactant secretion, at least through accelerating actin polymerization and decreasing intracellular trafficking, and the change in actin orientation would modulate intracellular trafficking.

8.
Pediatr Neonatol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38991861

ABSTRACT

BACKGROUND: The objective was to evaluate the efficacy of introducing less invasive surfactant administration (LISA) for management of preterm neonates with respiratory distress syndrome (RDS). METHODS: This was a retrospective cohort study identifying preterm neonates with RDS born between 2017 and 2022 in a tertiary neonatal unit, where LISA was introduced in January 2020. Time trend analysis comparing cohort of neonates born before (2017-2020) and after LISA introduction (2020-2022) was performed. The primary outcomes were incidence and severity of bronchopulmonary dysplasia (BPD). Multivariable regression models were used to estimate the association between introducing LISA to RDS management and health and safety outcomes. RESULTS: In total, 261 neonates with RDS were included (114 born after LISA was introduced). Neonates receiving invasive surfactant administration had lower gestational age, birth weight, lower Apgar scores, and higher oxygen requirement, compared to those receiving LISA. In the time trend analysis, introduction of LISA was associated with lower incidence of BPD (odds ratio (95% confidence interval) 0.34 (0.16, 0.72)), and lower severity of BPD (0.31 (0.16, 0.59)). Pre- and post-LISA period showed similar treatment safety profiles. CONCLUSION: Introduction of LISA was associated with improved prognosis in neonates with RDS in Hong Kong.

9.
Small ; : e2401982, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992997

ABSTRACT

Most organophosphates (OPs) are hydrophobic, and after exposure, can sequester into lipophilic regions within the body, such as adipose tissue, resulting in long term chronic effects. Consequently, there is an urgent need for therapeutic agents that can decontaminate OPs in these hydrophobic regions. Accordingly, an enzyme-polymer surfactant nanocomplex is designed and tested comprising chemically supercharged phosphotriesterase (Agrobacterium radiobacter; arPTE) electrostatically conjugated to amphiphilic polymer surfactant chains ([cat.arPTE][S-]). Experimentally-derived structural data are combined with molecular dynamics (MD) simulations to provide atomic level detail on conformational ensembles of the nanocomplex using dielectric constants relevant to aqueous and lipidic microenvironments. These show the formation of a compact admicelle pseudophase surfactant corona under aqueous conditions, which reconfigures to yield an extended conformation at a low dielectric constant, providing insight into the mechanism underpinning cell membrane binding. Significantly, it demonstrated that [cat.arPTE][S-] spontaneously binds to human mesenchymal stem cell membranes (hMSCs), resulting in on-cell OP hydrolysis. Moreover, the nanoconstruct can endocytose and partition into the intracellular fatty vacuoles of adipocytes and hydrolyze sequestered OP.

10.
Mol Pharm ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008633

ABSTRACT

Amorphous solid dispersions (ASDs) can be used to enhance the solubility and bioavailability of poorly soluble drugs. An ASD is often a ternary system containing a drug, a surfactant, and a polymer. Recent work on binary ASDs has observed significant differences between surface and bulk compositions, with impacts on wettability and stability. Here we investigate a ternary ASD composed of the antifungal posaconazole, the surfactant Span 80, and a dispersion polymer (PVP or PVP/VA). The surfactant loading was fixed at the typical level of 5 wt %, and the drug/polymer ratio was varied. We observed strong surface enrichment of the surfactant and simultaneous depletion of the drug. This effect is already pronounced in the binary drug-surfactant system and is enhanced by the addition of the polymers. Between the two polymers, the more hydrophilic PVP causes a stronger enhancement of the surface enrichment effect. These results demonstrate the impact of component interactions on the surface composition of ASDs and the performance.

11.
Brain Res ; 1840: 149108, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964703

ABSTRACT

BACKGROUND: One of the most common entry gates for systemic infection is the lung. In humans, pulmonary infections can lead to significant neurological impairment, ranging from acute sickness behavior to long-term disorders. Surfactant proteins (SP), essential parts of the pulmonary innate immune defense, have been detected in the brain of rats and humans. Recent evidence suggests that SP-A, the major protein component of surfactant, also plays a functional role in modulating neuroinflammation. This study aimed to determine whether SP-A deficiency affects the inflammatory response in the brain of adult mice during pulmonary infection. EXPERIMENTAL PROCEDURE: Adult male wild-type (WT, n = 72) and SP-A-deficient (SP-A-/-, n = 72) mice were oropharyngeally challenged with lipopolysaccharide (LPS), Pseudomonas aeruginosa (P. aeruginosa), or PBS (control). Both, behavioral assessment and subsequent brain tissue analysis, were performed 24, 48, and 72 h after challenge. The brain concentrations of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß were determined by ELISA. Quantitative rtPCR was used to detect SP-A mRNA expression in brain homogenates and immunohistochemistry was applied for the detection of SP-A protein expression in brain coronal slices. RESULTS: SP-A mRNA and histological evidence of protein expression were detected in both the lungs and brains of WT mice, with significantly higher amounts in lung samples. SP-A-/- mice exhibited significantly higher baseline concentrations of brain TNF-α, IL-6, and IL-1ß compared to WT mice. Oropharyngeal application of either LPS or P. aeruginosa elicited significantly higher brain levels of TNF-α and IL-1ß in SP-A-/- mice compared to WT mice at all time points. In comparison, behavioral impairment as a measure of sickness behavior, was significantly stronger in WT than in SP-A-/- mice, particularly after LPS application. CONCLUSION: SP-A is known for its anti-inflammatory role in the pulmonary immune response to bacterial infection. Recent evidence suggests that in an abdominal sepsis model SP-A deficiency can lead to increased cytokine levels in the brain. Our results extend this perception and provide evidence for an anti-inflammatory role of SP-A in the brain of adult WT mice after pulmonary infection.

12.
Molecules ; 29(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998950

ABSTRACT

In challenging reservoirs where thermal recovery falls short, cold or chemical oil recovery methods are crucial. Spontaneous emulsification (SE), triggered by gentle disturbance, significantly enhances oil recovery. In elucidating SE mechanisms and kinetics, SE processes via direct contact between oil and aqueous phases without stirring were conducted. The effects of temperature, emulsifier concentration, pH, NaCl concentration, and the oil-to-water ratio on SE were investigated through droplet size analysis and turbidity measurements. Furthermore, the emulsification mechanism and derived emulsification kinetics based on turbidity data were obtained. The results underscore the feasibility of SE for oil-water systems, reducing viscous and capillary resistances without agitation. The emulsified oil mass increased with the temperature, pH, and aqueous-to-oil phase volume ratio while decreasing with the NaCl concentration. In this study, for GD-2 crude oil, the optimal emulsified oil amount occurred at a betaine surfactant (BetS-2) emulsifier concentration of 0.45%. Microscopic photo analysis indicated narrow particle size distributions and small droplets, which remained stable over time under various experimental conditions. A combined SE mechanism involving ultralow interfacial tension, interfacial turbulence due to Marangoni effects, and "diffusion and stranding" due to in situ emulsifier hydrophilicity, was speculated. Additionally, an analogous second-order kinetic equation for SE was proposed, indicating exceptional correlation with calculated and experimentally measured values. This study offers theoretical insight for enhancing oil recovery in chemical and cold production of heavy oil in oilfields.

13.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999184

ABSTRACT

Surfactants play a crucial role in tertiary oil recovery by reducing the interfacial tension between immiscible phases, altering surface wettability, and improving foam film stability. Oil reservoirs have high temperatures and high pressures, making it difficult and hazardous to conduct lab experiments. In this context, molecular dynamics (MD) simulation is a valuable tool for complementing experiments. It can effectively study the microscopic behaviors (such as diffusion, adsorption, and aggregation) of the surfactant molecules in the pore fluids and predict the thermodynamics and kinetics of these systems with a high degree of accuracy. MD simulation also overcomes the limitations of traditional experiments, which often lack the necessary temporal-spatial resolution. Comparing simulated results with experimental data can provide a comprehensive explanation from a microscopic standpoint. This article reviews the state-of-the-art MD simulations of surfactant adsorption and resulting interfacial properties at gas/oil-water interfaces. Initially, the article discusses interfacial properties and methods for evaluating surfactant-formed monolayers, considering variations in interfacial concentration, molecular structure of the surfactants, and synergistic effect of surfactant mixtures. Then, it covers methods for characterizing microstructure at various interfaces and the evolution process of the monolayers' packing state as a function of interfacial concentration and the surfactants' molecular structure. Next, it examines the interactions between surfactants and the aqueous phase, focusing on headgroup solvation and counterion condensation. Finally, it analyzes the influence of hydrophobic phase molecular composition on interactions between surfactants and the hydrophobic phase. This review deepened our understanding of the micro-level mechanisms of oil displacement by surfactants and is beneficial for screening and designing surfactants for oil field applications.

14.
Trials ; 25(1): 433, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956676

ABSTRACT

BACKGROUND: Surfactant is a well-established therapy for preterm neonates affected by respiratory distress syndrome (RDS). The goals of different methods of surfactant administration are to reduce the duration of mechanical ventilation and the severity of bronchopulmonary dysplasia (BPD); however, the optimal administration method remains unknown. This study compares the effectiveness of the INtubate-RECruit-SURfactant-Extubate (IN-REC-SUR-E) technique with the less-invasive surfactant administration (LISA) technique, in increasing BPD-free survival of preterm infants. This is an international unblinded multicenter randomized controlled study in which preterm infants will be randomized into two groups to receive IN-REC-SUR-E or LISA surfactant administration. METHODS: In this study, 382 infants born at 24+0-27+6 weeks' gestation, not intubated in the delivery room and failing nasal continuous positive airway pressure (nCPAP) or nasal intermittent positive pressure ventilation (NIPPV) during the first 24 h of life, will be randomized 1:1 to receive IN-REC-SUR-E or LISA surfactant administration. The primary outcome is a composite outcome of death or BPD at 36 weeks' postmenstrual age. The secondary outcomes are BPD at 36 weeks' postmenstrual age; death; pulse oximetry/fraction of inspired oxygen; severe intraventricular hemorrhage; pneumothorax; duration of respiratory support and oxygen therapy; pulmonary hemorrhage; patent ductus arteriosus undergoing treatment; percentage of infants receiving more doses of surfactant; periventricular leukomalacia, severe retinopathy of prematurity, necrotizing enterocolitis, sepsis; total in-hospital stay; systemic postnatal steroids; neurodevelopmental outcomes; and respiratory function testing at 24 months of age. Randomization will be centrally provided using both stratification and permuted blocks with random block sizes and block order. Stratification factors will include center and gestational age (24+0 to 25+6 weeks or 26+0 to 27+6 weeks). Analyses will be conducted in both intention-to-treat and per-protocol populations, utilizing a log-binomial regression model that corrects for stratification factors to estimate the adjusted relative risk (RR). DISCUSSION: This trial is designed to provide robust data on the best method of surfactant administration in spontaneously breathing preterm infants born at 24+0-27+6 weeks' gestation affected by RDS and failing nCPAP or NIPPV during the first 24 h of life, comparing IN-REC-SUR-E to LISA technique, in increasing BPD-free survival at 36 weeks' postmenstrual age of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT05711966. Registered on February 3, 2023.


Subject(s)
Infant, Premature , Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Female , Humans , Infant, Newborn , Airway Extubation/adverse effects , Bronchopulmonary Dysplasia/therapy , Continuous Positive Airway Pressure , Gestational Age , Intubation, Intratracheal , Multicenter Studies as Topic , Pulmonary Surfactants/administration & dosage , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome, Newborn/therapy , Respiratory Distress Syndrome, Newborn/mortality , Time Factors , Treatment Outcome
15.
Sci Rep ; 14(1): 15676, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977830

ABSTRACT

The practical application of sensitized TiO2 nanocomposites is very satisfying due to their high photon utilization in visible light, simple recovery without affecting the photocatalytic performance, high energy efficiency, low potential environmental risk, and low operational costs. The objective of this study is developing the ionic liquid (IL)-based surfactant-free microemulsion, as a soft template, for preparation of a novel type of sensitized poly(methyl methacrylate)/TiO2 nanocomposite (PMMA/TiO2/IL). For this purpose, a series of visible light-responsive PMMA/TiO2/IL transparent nanocomposites were prepared in microemulsion composed of methyl methacrylate monomer, 1-buthyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), and 1-buthanol as amphi-solvent. Techniques such as diffuse reflectance spectroscopy (DRS)), attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray analysis (EDX) were used to characterize prepared nanocomposites. Photocatalytic degradation of methyl orange dye under visible light illumination, as an application in wastewater treatment, with the investigation of the influence of TiO2 content in the nanocomposite, pH, and nanocomposite reusability on photodegradation efficiency was studied and maximum value of 93.9% obtained at optimum conditions. The FESEM analysis indicated that the utilization of a relatively low amount of ionic liquid and also in absence of the surfactant ensures the monodispersity of the visible light sensitized TiO2 nanoparticles in the polymer matrix.

16.
Jpn J Radiol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012450

ABSTRACT

Childhood interstitial lung diseases (chILDs) encompass a diverse group of disorders with a high mortality rate and severe respiratory morbidities. Recent investigations have revealed that the classification of adult ILDs is not valid for chILDs, particularly for ILDs of early onset. Therefore, Children's Interstitial Lung Disease Research Cooperative of North America proposed a new classification of chILDs for affected children under 2 years of age, and later another classification for affected individuals between 2 and 18 years of age. In this review, we provide an overview of the imaging findings of chILDs by classification. Most infantile ILDs have unique clinical, radiological, and molecular findings, while the manifestation of pediatric ILDs overlaps with that of adult ILDs.

17.
Pest Manag Sci ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034816

ABSTRACT

BACKGROUND: Surfactants, particularly non-ionic ones, are widely used as adjuvants in pesticide formulations due to their ability to maintain pesticide effectiveness without changing solution properties, such as pH. While non-ionic surfactants are generally low-toxic, stable, and excellent dispersants with high solubilization capabilities, they may be less effective than cationic surfactants, which offer superior surface activity, transport properties, and antimicrobial action. This study investigates the efficacy of new piperidinium surfactants with carbamate fragments as adjuvants in insecticide formulations containing imidacloprid. The efficacy of these formulations is being assessed against greenhouse whitefly, a pest known to harm cultivated and ornamental flowering plants. RESULTS: The aggregation behavior of piperidinium surfactants containing carbamate fragments was investigated, and their wetting effect was evaluated. Synthesized surfactants have lower CMC values compared to their methylpiperidinium analogue. The effect of piperidinium surfactants on the insecticide concentration on the surface and inside tomato leaves was assessed using spectrophotometric methods. It was found that the introduction of piperidinium surfactants with carbamate fragment at a concentration of 0.1% wt. allows for decrease in lethal concentration of imidacloprid up to 10 times, thereby testifying the marked increase in the effectiveness of imidacloprid against the greenhouse whitefly insect pest (Trialeurodes vaporariorum). It was shown that the main factors responsible for the enhanced efficacy of the insecticide were the ability of the surfactant to increase the concentration of imidacloprid on the leaf surfaces and improve their penetration into the plant. CONCLUSION: The presented work employed a comprehensive approach, which significantly increases the generalizability of the results obtained and provides the ability to predict the effect and target selection of adjuvants. © 2024 Society of Chemical Industry.

18.
Neonatology ; : 1-10, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019018

ABSTRACT

INTRODUCTION: The European guideline for treatment of respiratory distress syndrome recommends less invasive surfactant administration (LISA) as the preferred method of surfactant administration in spontaneously breathing preterm infants. However, there is limited evidence on practical aspects such as sedation and catheter types, leading to considerable variability between centers. METHODS: An anonymous online survey (www.soscisurvey.de) was sent to 164 tertiary neonatal intensive care units (NICUs) in Germany including 43 questions on practical aspects of LISA. RESULTS: Of 122 (74%) participating NICUs, 117 (96%) reported experience with LISA with 82% of those reporting LISA as their preferred method of surfactant administration. Indications for surfactant administration differed widely between NICUs. Most (89%) used FiO2-thresholds only or in combination with other criteria, such as Silverman score/signs of dyspnea (41%) or lung ultrasound findings (3%). Prophylactic surfactant was administered by 42%. Differences in use of LISA in extremely immature infants were reported (e.g., 36% did not perform LISA in infants below 24-26 weeks). Preferred drugs for sedation were (Es-)Ketamine, followed by Propofol and Midazolam. Minimum time interval between subsequent LISA procedures was 4 (2-6) h. Catheters specifically designed for LISA were used by most NICUs (69%). CONCLUSION: This survey shows that LISA is common practice in German NICUs, but with considerable variability in practical aspects. These data may serve as a guidance for NICUs that have not yet implemented LISA and might be helpful design clinical trials with the aim to standardize and/or optimize LISA.

20.
Proc Natl Acad Sci U S A ; 121(30): e2408109121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39028694

ABSTRACT

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.


Subject(s)
COVID-19 , Lung , Organoids , SARS-CoV-2 , Virus Internalization , Humans , SARS-CoV-2/physiology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Lung/virology , Lung/immunology , Lung/pathology , Organoids/virology , COVID-19 Drug Treatment , Induced Pluripotent Stem Cells/virology , Angiotensin-Converting Enzyme 2/metabolism , Inflammation , Cytokines/metabolism , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...