Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.579
Filter
1.
J Environ Sci (China) ; 150: 332-339, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306408

ABSTRACT

NH3-SCR (SCR: Selective catalytic reduction) is an effective technology for the de-NOx process from both mobile and stationary pollution sources, and the most commonly used catalysts are the vanadia-based catalysts. An innovative V2O5-CeO2/TaTiOx catalyst for NOx removal was prepared in this study. The influences of Ce and Ta in the V2O5-CeO2/TaTiOx catalyst on the SCR performance and physicochemical properties were investigated. The V2O5-CeO2/TaTiOx catalyst not only exhibited excellent SCR activity in a wide temperature window, but also presented strong resistance to H2O and SO2 at 275 ℃. A series of characterization methods was used to study the catalysts, including H2-temperature programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, etc. It was discovered that a synergistic effect existed between Ce and Ta species. The introduction of Ce and Ta enlarged the specific surface area, increased the amount of acid sites and the ratio of Ce3+, (V3++V4+) and Oα, and strengthened the redox capability which were related to synergistic effect between Ce and Ta species, significantly improving the NH3-SCR activity.


Subject(s)
Ammonia , Cerium , Titanium , Vanadium Compounds , Catalysis , Cerium/chemistry , Titanium/chemistry , Ammonia/chemistry , Vanadium Compounds/chemistry , Air Pollutants/chemistry , Oxidation-Reduction , Air Pollution/prevention & control
2.
J Ethnopharmacol ; 336: 118661, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39159837

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY: The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS: We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS: Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Inflammasomes , Lipopolysaccharides , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Lipopolysaccharides/toxicity , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Nucleotidyltransferases/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Lung/drug effects , Lung/pathology , Lung/metabolism , Bronchoalveolar Lavage Fluid/cytology
3.
Food Chem ; 462: 141010, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217745

ABSTRACT

In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Hesperidin , Pectins , Hesperidin/pharmacology , Hesperidin/metabolism , Gastrointestinal Microbiome/drug effects , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Bacteria/isolation & purification , Humans , Pectins/metabolism , Pectins/chemistry , Pectins/pharmacology , Fermentation , Polysaccharides/pharmacology , Polysaccharides/metabolism , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism , Digestion , Models, Biological
4.
Food Chem ; 462: 141011, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226643

ABSTRACT

Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.


Subject(s)
Anti-Bacterial Agents , Chlorogenic Acid , Coumaric Acids , Drug Synergism , Shigella dysenteriae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Shigella dysenteriae/drug effects , Microbial Sensitivity Tests , Biofilms/drug effects , Propionates/pharmacology , Solanum lycopersicum/chemistry , Solanum lycopersicum/microbiology , Food Preservation/methods
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124981, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39154405

ABSTRACT

The bimetallic nanostructure of Au and Ag can integrate two distinct properties into a novel substrate compared to single metal nanostructures. This work presents a rapid and sensitive surface-enhanced Raman scattering (SERS) substrate for detecting illegal food additives and dyes of crystal violet (CV) and alkali blue 6B (AB 6B). Au-Ag alloy nanoparticles/Ag nanowires (Au-Ag ANPs/Ag NWs) were prepared by solid-state ionics method and vacuum thermal evaporation method at 5µA direct current electric field (DCEF), the molar ratio of Au to Ag was 1:18.34. Many 40 nm-140 nm nanoparticles regularly existed on the surface of Ag NWs with the diameters from 80 nm to 150 nm. The fractal dimension of Au-Ag ANPs/Ag NWs is 1.69 due to macroscopic dendritic structures. Compared with single Ag NWs, the prepared Au-Ag ANPs/Ag NWs substrates show superior SERS performance because of higher surface roughness, the SERS active of Ag NWs and bimetallic synergistic effect caused by Au-Ag ANPs, so the limit of detections (LOD) of Au-Ag ANPs/Ag NWs SERS substrates toward detection of CV and AB 6B were as low as 10-16mol/L and 10-9mol/L, respectively. These results indicate that Au-Ag ANPs/Ag NWs substrates can be used for rapid and sensitive detection of CV and AB 6B and have great development potential for detection of illegal food additives and hazardous substances in the fields of environmental monitoring and food safety.

6.
Biomaterials ; 312: 122712, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39098305

ABSTRACT

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.


Subject(s)
Liposomes , MicroRNAs , Photochemotherapy , Photosensitizing Agents , Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Humans , Liposomes/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Photochemotherapy/methods , Tumor Microenvironment/drug effects , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Female , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Mice , Aptamers, Nucleotide/chemistry , Delayed-Action Preparations/chemistry , RNA Interference , Zebrafish
7.
Biomaterials ; 312: 122749, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121725

ABSTRACT

The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.


Subject(s)
Alzheimer Disease , Apoptosis , Blood-Brain Barrier , Methylene Blue , Nanomedicine , Neuroinflammatory Diseases , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Apoptosis/drug effects , PC12 Cells , Neuroinflammatory Diseases/drug therapy , Rats , Mice , Nanomedicine/methods , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Male , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
8.
J Colloid Interface Sci ; 677(Pt A): 459-469, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39098279

ABSTRACT

High working voltage, large theoretical capacity and cheapness render Mn3O4 promising cathode candidate for aqueous zinc ion batteries (AZIBs). Unfortunately, poor electrochemical activity and bad structural stability lead to low capacity and unsatisfactory cycling performance. Herein, Mn3O4 material was fabricated through a facile precipitation reaction and divalent copper ions were introduced into the crystal framework, and ultra-small Cu-doped Mn3O4 nanocrystalline cathode materials with mixed valence states of Mn2+, Mn3+ and Mn4+ were obtained via post-calcination. The presence of Cu acts as structural stabilizer by partial substitution of Mn, as well as enhance the conductivity and reactivity of Mn3O4. Significantly, based on electrochemical investigations and ex-situ XPS characterization, a synergistic effect between copper and manganese was revealed in the Cu-doped Mn3O4, in which divalent Cu2+ can catalyze the transformation of Mn3+ and Mn4+ to divalent Mn2+, accompanied by the translation of Cu2+ to Cu0 and Cu+. Benefitting from the above advantages, the Mn3O4 cathode doped with moderate copper (abbreviated as CMO-2) delivers large discharge capacity of 352.9 mAh g-1 at 100 mA g-1, which is significantly better than Mn3O4 (only 247.8 mAh g-1). In addition, CMO-2 holds 203.3 mAh g-1 discharge capacity after 1000 cycles at 1 A g-1 with 98.6 % retention, and after 1000 cycles at 5 A g-1, it still performs decent discharge capacity of 104.2 mAh g-1. This work provides new ideas and approaches for constructing manganese-based AZIBs with long lifespan and high capacity.

9.
J Colloid Interface Sci ; 677(Pt A): 548-556, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39111090

ABSTRACT

Designing efficient and stable oxygen evolution reaction (OER) catalyst is the basis for the development of sustainable electrolytic water energy techniques. In this work, we presented a heterogeneous-structured electrocatalyst composed of bimetallic oxides-modified RuO2 nanosheets supported on nikel foam (Co2CrO4/RuO2) using a hybrid hydrothermal, ion-exchange and calcination method. The unique synergy and interfacial coupling between Co2CrO4/RuO2 heterostructures are favorable for optimizing the electronic configuration at this interface and strengthening the charge transport capacity, thus strengthening the catalytic activity of the Co2CrO4/RuO2 catalyst. The experimental data demonstrate that Cr leaching facilitates the rapid reconstruction of the catalyst into oxyhydroxides (CoOOH), which are acknowledged to be the real active species of OER. Theoretical calculations show that the Co2CrO4/RuO2 heterostructure increases the density state at the Fermi energy level and lowers the d-band center, thereby strengthening the catalytic activity. The synthesized Co2CrO4/RuO2 catalyst exhibited OER performance with an overpotential of 209 mV at 10 mA cm-2 and displayed a low Tafel slope of 78.2 mV dec-1, which outperforms most reported advanced alkaline OER catalysts. This work contributes to a new tactic for the design and development of ruthenium oxide/bimetallic oxides electrocatalysts.

10.
J Environ Sci (China) ; 147: 22-35, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003042

ABSTRACT

High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.


Subject(s)
Clay , Environmental Restoration and Remediation , Soil Pollutants , Soil , Clay/chemistry , Soil/chemistry , Catalysis , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Hot Temperature
11.
J Environ Sci (China) ; 149: 188-199, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181633

ABSTRACT

Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments. Numerous strategies have been devised to facilitate the generation of reactive oxygen species (ROS) within photocatalysts, ultimately leading to the eradication of bacteria. However, the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured, and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited. Herein, graphitic carbon nitride (g-C3N4) is chemically protonated to expose more sharp edges. PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production. Meanwhile, the sharp edges on the protonated g-C3N4 facilitate the physical disruption of cell walls for further promoting oxidative damage. Protonated C3N4 demonstrated superior bactericidal performance than that of pristine g-C3N4, effectively eliminating Escherichia coli within 40 minutes under irradiation. This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.


Subject(s)
Disinfection , Nitriles , Nitriles/chemistry , Disinfection/methods , Catalysis , Escherichia coli/drug effects , Reactive Oxygen Species , Graphite/chemistry , Sterilization/methods , Nitrogen Compounds/chemistry
12.
3D Print Addit Manuf ; 11(3): e1298-e1309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39359593

ABSTRACT

Dual-phase reinforcing approach provides a novel and efficient strategy for the fabrication of advanced aluminum matrix composites (AMCs). The devisable and desirable performance could be achieved by tuning dual-phase reinforcing system. However, it is still challenging to design a dual-phase reinforcing system with synergistic strengthening effect, especially for the laser powder bed fusion (LPBF) characterized by nonequilibrium metallurgical process. In this work, we designed and fabricated dual-phase (TiN+AlN) particles (20 wt.%) reinforced pure Al by LPBF. The TiN and AlN can form a metastable ternary Ti1-xAlxN solid solution in the whole range of composition, which is a promising reinforcing phase for AMCs. We observed novel microstructure in laser-fabricated composites under the action of dual-phase (TiN+AlN) ceramic particles and laser melting process. A gradient layer is formed on the surface of TiN particles. This interfacial structure can act as an anchor for ceramic particles in the Al matrix, which is beneficial to achieve a strong interface bonding and good load transfer. Besides this gradient layer, uniformly dispersed Ti1-xAlxN nanoparticles were observed to precipitate, which can effectively hinder dislocation movement and refine grains. Furthermore, the pure Al and TiN/Al, AlN/Al composites were fabricated to compare and reveal the contributions of dual-phase (TiN+AlN) reinforcements. The tensile strength of the (TiN+AlN)/Al composite reach ∼254 MPa, improved by ∼75% and ∼81% compared with those of the TiN/Al and the AlN/Al composites, respectively. This novel microstructure about gradient layer and precipitated nanoparticles contributes to the high strengthening efficiency of the (TiN+AlN)/Al composite.

13.
Int J Nanomedicine ; 19: 9973-9987, 2024.
Article in English | MEDLINE | ID: mdl-39360036

ABSTRACT

Introduction: Breast cancer ranks among the most prevalent cancers in women, characterized by significant morbidity, disability, and mortality. Presently, chemotherapy is the principal clinical approach for treating breast cancer; however, it is constrained by limited targeting capability and an inadequate therapeutic index. Photothermal therapy, as a non-invasive approach, offers the potential to be combined with chemotherapy to improve tumor cellular uptake and tissue penetration. In this research, a mesoporous polydopamine-coated gold nanorod nanoplatform, encapsulating doxorubicin (Au@mPDA@DOX), was developed. Methods: This nanoplatform was constructed by surface coating mesoporous polydopamine (mPDA) onto gold nanorods, and doxorubicin (DOX) was encapsulated in Au@mPDA owing to π-π stacking between mPDA and DOX. The dynamic diameter, zeta potential, absorbance, photothermal conversion ability, and drug release behavior were determined. The cellular uptake, cytotoxicity, deep penetration, and anti-tumor effects were subsequently investigated in 4T1 cells. After that, fluorescence imaging, photothermal imaging and pharmacodynamics studies were utilized to evaluate the anti-tumor effects in tumor-bearing mice model. Results: This nanoplatform exhibited high drug loading capacity, excellent photothermal conversion and, importantly, pH/photothermal dual-responsive drug release behavior. The in vitro results revealed enhanced photothermal-facilitated cellular uptake, drug release and tumor penetration of Au@mPDA@DOX under near-infrared irradiation. In vivo studies confirmed that, compared with monotherapy with either chemotherapy or photothermal therapy, the anti-tumor effects of Au@mPDA@DOX are synergistically improved. Conclusion: Together with good biosafety and biocompatibility, the Au@mPDA@DOX nanoplatform provides an alternative method for safe and synergistic treatment of breast cancer.


Subject(s)
Breast Neoplasms , Doxorubicin , Gold , Indoles , Nanotubes , Photothermal Therapy , Polymers , Animals , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Female , Gold/chemistry , Mice , Indoles/chemistry , Indoles/pharmacology , Indoles/pharmacokinetics , Photothermal Therapy/methods , Cell Line, Tumor , Nanotubes/chemistry , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Polymers/chemistry , Mice, Inbred BALB C , Drug Liberation , Combined Modality Therapy , Humans , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/administration & dosage , Phototherapy/methods
14.
ACS Appl Bio Mater ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350400

ABSTRACT

Bacterial resistance to antibiotics can negatively affect the treatment of infected skin wounds. The combination of synergistic antibacterial therapies with photodynamic, photothermal, and chemodynamic therapies has been recognized as one of the most promising approaches. In this study, we have developed MSN@Ce6@MnO2-CS/Ag (MCMA) nanoparticles to serve as powerful antibacterial agents when exposed to both 660 nm visible light and 808 nm near-infrared (NIR) light. Through dual-light irradiation, MCMA can induce hyperthermia and generate reactive oxygen species (ROS), leading to a remarkable enhancement in photothermal antibacterial effects and accelerating wound healing. It has a peroxidase-like catalytic activity and promotes the generation of hydroxyl radicals (·OH) by catalyzing the decomposition of H2O2. In vitro antibacterial experiments demonstrated the excellent antibacterial activity of MCMA. The antibacterial efficacy of MCMA at a concentration of 250 µg ml-1 was found to be 99.6 and 100% toward Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively, under irradiation with an 808 and 660 nm laser. The results of the animal experiments demonstrated that MCMA can effectively accelerate wound healing through wound ulceration inhabitation. These findings substantiate the assertion that synthetic MCMA represents an efficacious strategy for bacterial inhibition and wound healing.

15.
Angew Chem Int Ed Engl ; : e202413530, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352041

ABSTRACT

The emergence of highly wavelength resolved reactivity information for complex photochemical reaction processes allows the establishment of multi-color reaction modes. One particularly powerful mode is the synergistic two-color reaction, where two colors of light have to be present in the same volume element to either enable or enhance photochemical reactivity that leads to a specific photoproduct. Herein, we introduce a two-color synergistic photochemical reaction system based on a diaryl indenone epoxide (DIO) photoswitch and the cis-to-trans isomerization of a bridged ring-strained azobenzene (SA), which respond to ultraviolet (365 nm) and visible light (430 nm), respectively, with different rates, forming a well-defined heterocyclic photoadduct, DIOSA, that we structurally confirm via single crystal x-ray diffraction (SXRD). To quantitatively capture the effectiveness of the dual-color irradiation as a function of the reaction conditions such as light intensity and starting material ratio as a function of product yield, we introduce a parameter, the photochemical synergistic ratio. A reduced synergistic ratio - that extrapolates to conditions of infinitesimal conversions - allows to compare the efficiency of the synergistic photochemistry at varying reaction conditions.

16.
Article in English | MEDLINE | ID: mdl-39357010

ABSTRACT

Doping modifications and surface coatings are effective methods to slow volume dilatation and boost the conductivity in silicon (Si) anodes for lithium-ion batteries (LIBs). Herein, using low-cost ferrosilicon from industrial production as the energy storage material, a bread-like nitrogen-doped carbon shell-coated porous Si embedded with the titanium nitride (TiN) nanoparticle composite (PSi/TiN@NC) was synthesized by simple ball milling, etching, and self-assembly growth processes. Remarkably, the porous Si structure formed by etching the FeSi2 phase in ferrosilicon alloys can provide buffer space for significant volume expansion during lithiation. Highly conductive and stable TiN particles can act as stress absorption sites for Si and improve the electronic conductivity of the material. Furthermore, the nitrogen-doped porous carbon shell further helps to sustain the structural stability of the electrode material and boost the migration rate of Li-ions. Benefiting from its unique synergistic effect of components, the PSi/TiN@NC anode exhibits a reversible discharge capacity up to 1324.2 mAh g-1 with a capacity retention rate of 91.5% after 100 cycles at 0.5 A g-1 (vs fourth discharge). Simultaneously, the electrode also delivers good rate performance and a stable discharge capacity of 923.6 mAh g-1 over 300 cycles. This research can offer a potential economic strategy for the development of high-performance and inexpensive Si-based anodes for LIBs.

17.
Biomed Pharmacother ; 180: 117539, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383733

ABSTRACT

Currently, traditional monotherapy for cancer often results in indiscriminate attacks on the body, leading to the emergence of new health problems. To confront these challenges, multimodal combination therapy has become necessary. However, how to develop new smart nanomaterials through green synthesis methods, delivering drugs while simultaneously synergizing multimodal combination therapies for tumor treatment, remains a topic of great significance. In this study, a biomimetic composite nanomaterial (RM-Cu/P) composed of mesoporous polydopamine (MPDA) as the core and red blood cell membranes (RBCMs) as the shell was synthesized as a drug carrier to deliver doxorubicin (DOX) while achieving synergistic chemotherapy, photothermal and chemodynamic therapy (CT/PTT/CDT). Herein, the nanoparticles were extensively characterized to examine their morphological characteristics, elemental composition, and drug-carrying capacity. Notably, the coating of RBCM reduced the toxicity of the RM-Cu/P@DOX nanoparticles, improved their targeting ability and prolonged their circulation time in vivo. The Cu-doped nanoparticles were capable of initiating a Fenton-like reaction to generate reactive oxygen species (ROS) for CDT, while the photothermal conversion efficiency (η) reached 45.20 % under NIR laser irradiation. Subsequently, the particles were examined by in vivo and in vitro experimental studies in cytotoxicity, cellular uptake, ROS levels, lysosomal escape, and mouse tumor model to evaluate their potential application in antitumor. Compared with monotherapy, the RM-Cu/P@DOX nanoparticles had multiple-stimulation response properties under redox, pH, and NIR, which exhibited the advantage of combined trimodal therapy, resulting in remarkable synergistic antitumor efficacy. In conclusion, this innovative platform exhibited promising applications in smart drug delivery and synergistic treatment of cancer.

18.
J Environ Manage ; 370: 122764, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383747

ABSTRACT

Agricultural soil contamination by potentially toxic elements (PTEs) such as arsenic (As) and cadmium (Cd) poses a serious threat to food security. Immobilization serves as a widely used approach for the remediation of PTEs contaminated soils, nevertheless, the long-term effectiveness for the simultaneous immobilization of both cations and oxyanions remains a challenge. In order to effectively enhance the synergistic immobilization effect of soil As and Cd contaminated by multiple elements and improve the ecological environment of farmland. In this study, a typical polluted tailings area farmland was selected for situ immobilization experiments, and biochar was prepared from cow manure (CMB), rice straw (RSB), and pine wood (PWB) as raw materials. On this basis, the pristine biochar was modified with ferric chloride (F), potassium permanganate (K), magnesium chloride (M), and aluminum chloride (A), respectively. Furthermore, the immobilization effect of modified biochar on As-Cd and the stress effect on soil respiration were investigated. The results showed that CMB and RSB reduced the bioavailability of heavy metals, potassium permanganate has strong oxidizing properties, and the strong oxidability of potassium permanganate stimulated the generation of more oxygen-containing functional groups on the surface of biochar, thereby enhancing the adsorption and complexation effect of modified materials on As and Cd. Among them, the extracted Cd concentration of Diethylenetriamine pentaacetic acid (DTPA) in KCMB and KRSB in 2020 decreased by 8.23-43.12% and 9.67-35.29% compared to other treatments, respectively. Meanwhile, the KCMB and KRSB treatments also reduced the enrichment of As and Cd in plant tissues. In addition, the dissolved organic carbon (DOC) content in KCMB treatment was relatively high, and the carbon stability of the material was weakened. Simultaneously, the soil respiration emission of KCMB treatment was increased by 5.63% and 11.93% compared to KRSB and KPWB treatments, respectively. In addition, the structural equation also shows that DOC has a large positive effect on soil respiration. In summary, the KRSB treatment effectively achieve synergistic immobilization of As-Cd and provide important guiding significance for green and low-carbon remediation of polluted farmland.

19.
Front Endocrinol (Lausanne) ; 15: 1403717, 2024.
Article in English | MEDLINE | ID: mdl-39355615

ABSTRACT

Background: Patients with type 2 diabetes mellitus (DM) have a high prevalence of chronic kidney disease (CKD). Energy imbalance and inflammation may be involved in the pathogenesis of CKD. We examined the effects of brain-derived neurotrophic factor (BDNF) and vascular cell adhesion molecule-1 (VCAM-1) on CKD in patients with type 2 DM. Methods: Patients with type 2 DM were enrolled for this cross-sectional study. Fasting serum was prepared to measure the BDNF and VCAM-1 levels. An estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 was used as the criterion for identifying patients with CKD. Results: Of the 548 enrolled participants, 156 had CKD. Patients with CKD exhibited significantly lower BDNF (median of 21.4 ng/mL, interquartile range [IQR]: 17.0-27.0 ng/mL vs. median of 25.9 ng/mL, IQR: 21.0-30.4 ng/mL, P <0.001) and higher VCAM-1 (median of 917 ng/mL, IQR: 761-1172 ng/mL vs. median of 669 ng/mL, IQR: 552-857 ng/mL, P <0.001) levels than those without CKD. Serum BDNF levels were inversely correlated with VCAM-1 levels (Spearman's rank correlation coefficient = -0.210, P <0.001). The patients were divided into four subgroups based on median BDNF and VCAM-1 levels (24.88 ng/mL and 750 ng/mL, respectively). Notably, patients in the high VCAM-1 and low BDNF group had the highest prevalence (50%) of CKD. Multivariate logistic regression revealed a significantly higher odds ratio (OR) of CKD in the high VCAM-1 and low BDNF group (OR = 3.885, 95% CI: 1.766-8.547, P <0.001), followed by that in the high VCAM-1 and high BDNF group (OR = 3.099, 95% CI: 1.373-6.992, P =0.006) compared with that in the low VCAM-1 and high BDNF group. However, the risk of CKD in the low VCAM-1 and low BDNF group was not significantly different from that in the low VCAM-1 and high BDNF group (P =0.266). Conclusion: CKD in patients with type 2 DM is associated with low serum BDNF and high VCAM-1 levels. BDNF and VCAM-1 have a synergistic effect on CKD. Thus, BDNF and VCAM-1 can be potential biomarkers for CKD risk stratification in patients with type 2 DM.


Subject(s)
Brain-Derived Neurotrophic Factor , Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Vascular Cell Adhesion Molecule-1 , Humans , Brain-Derived Neurotrophic Factor/blood , Vascular Cell Adhesion Molecule-1/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Female , Cross-Sectional Studies , Middle Aged , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Aged , Biomarkers/blood , Glomerular Filtration Rate
20.
Adv Mater ; : e2408361, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358930

ABSTRACT

Arsenic agents have shown great potential in fighting leukemia, but are poorly known in treating solid tumors, mainly ascribing to the rapid clearance and low targeting ability. It is reported that morphology modulation can enhance the interaction between nanoparticles and cell membrane. Herein, a dismountable protein corona-modified virus-like manganese-arsenic nanomedicine (vMnAs@HR) is rationally proposed for realizing safe and targeted delivery and synergistic arsenotherapy. The virus-like manganese-arsenic nanoparticle (vMnAs) is constructed followed by modification of a temporary R848-loaded HDL (HR) protein corona. Upon intravenous injection, the HR protein corona is stable and actively targeted to tumor tissue by taking advantage of the interaction between HDL and its receptor SR-BI. Intriguingly, upon accumulated in the tumor, HR can be jettisoned and interacted with macrophages for proinflammatory phenotype modulation. The re-exposed vMnAs can efficiently enhance endocytosis by taking advantage of the rationally designed spiky morphology. Moreover, the released double-stranded DNA (dsDNA) and manganese ions during tumor cell apoptosis can cooperatively activate cyclic guanosine monophosphate adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway of DCs for systematic immune activation. It is anticipated that this morphology-transformable nanomedicine can realize safe and efficient arsenic delivery for synergistic arsenotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL