Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Biotechnol Bioeng ; 121(9): 2752-2766, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38877732

ABSTRACT

Natural hydrogels are widely employed in tissue engineering and have excellent biodegradability and biocompatibility. Unfortunately, the utilization of such hydrogels in the field of three-dimensional (3D) printing nasal cartilage is constrained by their subpar mechanical characteristics. In this study, we provide a multicrosslinked network hybrid ink made of photocurable gelatin, hyaluronic acid, and acrylamide (AM). The ink may be processed into intricate 3D hydrogel structures with good biocompatibility and high stiffness properties using 3D printing technology based on digital light processing (DLP), including intricate shapes resembling noses. By varying the AM content, the mechanical behavior and biocompatibility of the hydrogels can be adjusted. In comparison to the gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA) hydrogel, adding AM considerably enhances the hydrogel's mechanical properties while also enhancing printing quality. Meanwhile, the biocompatibility of the multicrosslinked network hydrogels and the development of cartilage were assessed using neonatal Sprague-Dawley (SD) rat chondrocytes (CChons). Cells sown on the hydrogels considerably multiplied after 7 days of culture and kept up the expression of particular proteins. Together, our findings point to GelMA/HAMA/polyacrylamide (PAM) hydrogel as a potential material for nasal cartilage restoration. The photocuring multicrosslinked network ink composed of appropriate proportions of GelMA/HAMA/PAM is very suitable for DLP 3D printing and will play an important role in the construction of nasal cartilage, ear cartilage, articular cartilage, and other tissues and organs in the future. Notably, previous studies have not explored the application of 3D-printed GelMA/HAMA/PAM hydrogels for nasal cartilage regeneration.


Subject(s)
Hydrogels , Nasal Cartilages , Printing, Three-Dimensional , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Rats , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Chondrocytes/cytology , Tissue Engineering , Hyaluronic Acid/chemistry , Gelatin/chemistry , Bioprinting/methods
2.
Sci Total Environ ; 946: 174320, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38942313

ABSTRACT

Antarctica has traditionally been viewed as a relatively isolated ecosystem. Although still considered pristine, it is increasingly also being affected by microplastic pollution. Reported high sea floor concentrations raise concern that these ecosystems might act as major sink for microplastic pollution. This is significant as species in those remote ecosystems are likely more sensitive to rapid environmental change due to a high level of specialization, and lower tolerance levels. Microplastic ingestion in fish has barely been assessed in high latitude environments. Here we aimed to provide baseline data for the eastern Weddell Sea, which is particularly remote, and suggested for an area of conservation. By analyzing gastrointestinal tracts of 40 specimens from five species, we report an overall microplastic incidence rate of 0.23. This is lower than recent studies have found for other species in the Southern Ocean, and below global means. The highest incidence rate was detected in L. squamifrons (0.67), followed by P. evansii (0.29). The most common polymer was polyethylene recovered as 8 particles (42.1 %) from one specimen, while from the remaining 11 microplastics polyester was most common (36.8 %). This study shows that even in a remote region of the Antarctic Ocean with almost no vessel traffic, fisheries or touristic activity, bathydemersal and bathypelagic fish exhibit microplastic particles in their gastrointestinal tract.


Subject(s)
Environmental Monitoring , Fishes , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/analysis , Antarctic Regions , Water Pollutants, Chemical/analysis , Eating , Plastics/analysis
3.
Carbohydr Polym ; 337: 122116, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710566

ABSTRACT

In response to the burgeoning interest in the development of highly conformable and resilient flexible electronic sensors capable of transducing diverse physical stimuli, this review investigates the pivotal role of natural polymers, specifically those derived from starch, in crafting sustainable and biocompatible sensing materials. Expounding on cutting-edge research, the exploration delves into innovative strategies employed to leverage the distinctive attributes of starch in conjunction with other polymers for the fabrication of advanced sensors. The comprehensive discussion encompasses a spectrum of starch-based materials, spanning all-starch-based gels to starch-based soft composites, meticulously scrutinizing their applications in constructing resistive, capacitive, piezoelectric, and triboelectric sensors. These intricately designed sensors exhibit proficiency in detecting an array of stimuli, including strain, temperature, humidity, liquids, and enzymes, thereby playing a pivotal role in the continuous and non-invasive monitoring of human body motions, physiological signals, and environmental conditions. The review highlights the intricate interplay between material properties, sensor design, and sensing performance, emphasizing the unique advantages conferred by starch-based materials, such as self-adhesiveness, self-healability, and re-processibility facilitated by dynamic bonding. In conclusion, the paper outlines current challenges and future research opportunities in this evolving field, offering valuable insights for prospective investigations.

4.
Biomimetics (Basel) ; 9(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786494

ABSTRACT

The purpose of this study was to evaluate the repair process in rat calvaria filled with synthetic biphasic bioceramics (Plenum® Osshp-70:30, HA:ßTCP) or autogenous bone, covered with a polydioxanone membrane (PDO). A total of 48 rats were divided into two groups (n = 24): particulate autogenous bone + Plenum® Guide (AUTOPT+PG) or Plenum® Osshp + Plenum® Guide (PO+PG). A defect was created in the calvaria, filled with the grafts, and covered with a PDO membrane, and euthanasia took place at 7, 30, and 60 days. Micro-CT showed no statistical difference between the groups, but there was an increase in bone volume (56.26%), the number of trabeculae (2.76 mm), and intersection surface (26.76 mm2) and a decrease in total porosity (43.79%) in the PO+PG group, as well as higher values for the daily mineral apposition rate (7.16 µm/day). Histometric analysis presented material replacement and increased bone formation at 30 days compared to 7 days in both groups. Immunostaining showed a similar pattern between the groups, with an increase in proteins related to bone remodeling and formation. In conclusion, Plenum® Osshp + Plenum® Guide showed similar and sometimes superior results when compared to autogenous bone, making it a competent option as a bone substitute.

5.
ACS Appl Mater Interfaces ; 16(15): 19496-19506, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568217

ABSTRACT

Mineral-polymer composites found in nature exhibit exceptional structural properties essential to their function, and transferring these attributes to the synthetic design of functional materials holds promise across various sectors. Biomimetic fabrication of nanocomposites introduces new pathways for advanced material design and explores biomineralization strategies. This study presents a novel approach for producing single platelet nanocomposites composed of CaCO3 and biomimetic peptoid (N-substituted glycines) polymers, akin to the bricks found in the brick-and-mortar structure of nacre, the inner layer of certain mollusc shells. The significant aspect of the proposed strategy is the use of organic peptoid nanosheets as the scaffolds for brick formation, along with their controlled mineralization in solution. Here, we employ the B28 peptoid nanosheet as a scaffold, which readily forms free-floating zwitterionic bilayers in aqueous solution. The peptoid nanosheets were mineralized under consistent initial conditions (σcalcite = 1.2, pH 9.00), with variations in mixing conditions and supersaturation profiles over time aimed at controlling the final product. Nanosheets were mineralized in both feedback control experiments, where supersaturation was continuously replenished by titrant addition and in batch experiments without a feedback loop. Complete coverage of the nanosheet surface by amorphous calcium carbonate was achieved under specific conditions with feedback control mineralization, whereas vaterite was the primary CaCO3 phase observed after batch experiments. Thermodynamic calculations suggest that time-dependent supersaturation profiles as well as the spatial distribution of supersaturation are effective controls for tuning the mineralization extent and product. We anticipate that the control strategies outlined in this work can serve as a foundation for the advanced and scalable fabrication of nanocomposites as building blocks for nacre-mimetic and functional materials.

6.
Polymers (Basel) ; 16(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543448

ABSTRACT

Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.

7.
J Funct Biomater ; 15(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38391892

ABSTRACT

The regenerative capacity of well-preserved blood clots may be enhanced by biologics like enamel matrix derivative (EMD). This retrospective analysis compares outcomes reported by three centers using different heterografts. Center 1 (C1) treated intrabony defects combining cross-linked high-molecular-weight hyaluronic acid (xHyA) with a xenograft; center 2 (C2) used EMD with an allograft combination to graft a residual pocket. Center 3 (C3) combined xHyA with the placement of a resorbable polymer membrane for defect cover. Clinical parameters, BoP reduction, and radiographically observed defect fill at 12-month examination are reported. The 12-month evaluation yielded significant improvements in PPD and CAL at each center (p < 0.001, respectively). Analyses of Covariance revealed significant improvements in all parameters, and a significantly greater CAL gain was revealed for C2 vs. C1 (p = 0.006). Radiographic defect fill presented significantly higher scores for C2 and C3 vs. C1 (p = 0.003 and = 0.014; C2 vs. C3 p = 1.00). Gingival recession increased in C1 and C3 (p = 1.00), while C2 reported no GR after 12 months (C2:C1 p = 0.002; C2:C3 p = 0.005). BoP tendency and pocket closure rate shared similar rates. Within the limitations of the study, a data comparison indicated that xHyA showed a similar capacity to enhance the regenerative response, as known for EMD. Radiographic follow-up underlined xHyA's unique role in new attachment formation.

8.
Polymers (Basel) ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399861

ABSTRACT

Poly-lactic acid (PLA) is a synthetic polymer that has gained popularity as a scaffold due to well-established manufacturing processes, predictable biomaterial properties, and sustained therapeutic release rates. However, its drawbacks include weak mechanical parameters and reduced medicinal delivery efficacy after PLA degradation. The development of synthetic polymers that can release antibiotics and other medicines remains a top research priority. This study proposes a novel approach to produce PLA by converting Brewer's spent grain (BSG) into lactic acid by bacterial fermentation followed by lactide ring polymerization with a metal catalyst. The elution properties of the PLA polymer are evaluated using modified Kirby-Bauer assays involving the antimicrobial chemotherapeutical, trimethoprim (TMP). Molded PLA polymer disks are impregnated with a known killing concentration of TMP, and the PLA is evaluated as a drug vehicle against TMP-sensitive Escherichia coli. This approach provides a practical means of assessing the polymer's ability to release antimicrobials, which could be beneficial in exploring new drug-eluting synthetic polymer strategies. Overall, this study highlights the potential of using BSG waste materials to produce valuable biomaterials of medical value with the promise of expanded versatility of synthetic PLA polymers in the field of drug-impregnated tissue grafts.

9.
Cureus ; 16(1): e52830, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38406062

ABSTRACT

Objectives In the present study, electrospun bone tissue membrane (EBTM) was prepared using polyvinylidene fluoride (PVDF), gelatin (gel), and demineralized bone matrix (DBM) by electrospinning method for its potential application in bone tissue regeneration. Materials and methods The prepared EBTM was evaluated using high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray spectroscopy (EDX; Silicon Drift 2017, USA), thermogravimetric analysis (TGA), and mechanical properties such as tensile strength (MPa), elongation at break (%), flexibility (%), and water absorption (%). In vitro bioactivity testing of EBTM using simulated body fluid (SBF) was performed after 14 days of immersion. Cell viability was tested using human osteoblast-like cells (MG-63) to prove biocompatibility. Results EBTM had superior surface morphology, thermal stability, and mechanical strength. The mechanical properties of EBTM were promising, enabling its use in tissue engineering. Bioactivity test showed that the EBTM surface developed calcium (Ca) and phosphate (P) after 14 days of being immersed in SBF. Additionally, a biocompatibility investigation revealed that EBTM was covered with more viable cells. Conclusion EBTM with sufficient mechanical strength, thermal stability, surface morphology, Ca deposition, and biocompatibility could serve as a plausible material for bone tissue engineering (skin, ligament, cartilage, and bone).

10.
Adv Healthc Mater ; 13(10): e2303615, 2024 04.
Article in English | MEDLINE | ID: mdl-38174888

ABSTRACT

An innovative methodology is presented for synthesizing synthetic polymer nanoparticles (TINPs) as potent tyrosinase inhibitors. This inhibition strategy combines the integration of two distinct functionalities, phenol, and phenylboronic acid, within the TINPs structure. The phenyl group mimics the natural monophenol substrate, forming a strong coordination with the catalytic copper ion, significantly inhibiting tyrosinase activity. Additionally, phenylboronic acid interacts with catechol, another tyrosinase substrate, further reducing enzyme efficiency. The shared benzene ring in phenyl and phenylboronic acid enhances binding to tyrosinase's hydrophobic pocket near its copper active site, contributing to potent inhibition. TINPs exhibit exceptional performance, boasting an impressive IC50 value of 3.5×10-8 m and an inhibition constant of 9.8×10-9 m. Validation of the approach is unequivocally demonstrated through the successful inhibition of tyrosinase activity and melanin production, substantiated in both in vitro and in vivo scenarios. The mechanism of TINP inhibition is elucidated through circular dichroism and Fourier transform infrared spectroscopy. This study introduces a versatile design approach for developing abiotic polymer-based enzyme inhibitors, expanding possibilities in enzyme inhibition research.


Subject(s)
Boronic Acids , Monophenol Monooxygenase , Nanoparticles , Copper/metabolism , Copper/pharmacology , Kinetics , Monophenol Monooxygenase/chemistry
11.
Bioengineering (Basel) ; 11(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38247929

ABSTRACT

Hereditary optic neuropathies (HONs) such as dominant optic atrophy (DOA) and Leber Hereditary Optic Neuropathy (LHON) are mitochondrial diseases characterized by a degenerative loss of retinal ganglion cells (RGCs) and are a cause of blindness worldwide. To date, there are only limited disease-modifying treatments for these disorders. The discovery of induced pluripotent stem cell (iPSC) technology has opened several promising opportunities in the field of HON research and the search for therapeutic approaches. This systematic review is focused on the two most frequent HONs (LHON and DOA) and on the recent studies related to the application of human iPSC technology in combination with biomaterials technology for their potential use in the development of RGC replacement therapies with the final aim of the improvement or even the restoration of the vision of HON patients. To this purpose, the combination of natural and synthetic biomaterials modified with peptides, neurotrophic factors, and other low- to medium-molecular weight compounds, mimicking the ocular extracellular matrices, with human iPSC or iPSC-derived cell retinal progenitors holds enormous potential to be exploited in the near future for the generation of transplantable RGC populations.

12.
Polymers (Basel) ; 15(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139878

ABSTRACT

The conducted investigation encompassed the comprehensive integration of mechanical, environmental, chemical, and microstructural evaluations of a composite amalgamating sandy soil and a synthetic polymer at two distinct concentrations (2.5% and 5%) across multiple curing intervals (0, 1, 2, 4, 7, 15, 30, and 45 days). The studied soil originates from an environmentally significant protected area in Brazil. The implementation of mechanisms for soil improvement in the region must adhere to technical criteria without causing environmental harm. Direct shear testing was conducted, permeability was assessed, and microstructure analysis and XRD and XRF/EDX studies of both the soil and composites were conducted. It was observed that longer curing times yielded improved results in shear stress, friction angle, and cohesive intercept, with SP_5% exhibiting the highest values compared with the soil and SP_2.5%. Adding the polymeric solution to the soil contributed to cementation and cohesion gains in the substrate. Through microstructural characterization, the polymer's role as a cementing agent for the grains is evident, forming a film on the grains and binding them together. Based on the analyses and studies conducted in the research, it can be concluded that there is technical feasibility for applying the polymeric solution at both dosages in geotechnical projects.

13.
14.
Bioengineering (Basel) ; 10(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37760101

ABSTRACT

Human embryonic stem cells and induced pluripotent stem cells (hPSC) have an unprecedented opportunity to revolutionize the fields of developmental biology as well as tissue engineering and regenerative medicine. However, their applications have been significantly limited by the lack of chemically defined and xeno-free culture conditions. The demand for the high-quality and scaled-up production of cells for use in both research and clinical studies underscores the need to develop tools that will simplify the in vitro culture process while reducing the variables. Here, we describe a systematic study to identify the optimal conditions for the initial cell attachment of hPSC to tissue culture dishes grafted with polymers of N-(3-Sulfopropyl)-N-Methacryloxyethyl-N, N-Dimethylammoniun Betaine (PMEDSAH) in combination with chemically defined and xeno-free culture media. After testing multiple supplements and chemicals, we identified that pre-conditioning of PMEDSAH grafted plates with 10% human serum (HS) supported the initial cell attachment, which allowed for the long-term culture and maintenance of hPSC compared to cells cultured on Matrigel-coated plates. Using this culture condition, a 2.1-fold increase in the expansion of hPSC was observed without chromosomal abnormalities. Furthermore, this culture condition supported a higher reprogramming efficiency (0.37% vs. 0.22%; p < 0.0068) of somatic cells into induced pluripotent stem cells compared to the non-defined culture conditions. This defined and xeno-free hPSC culture condition may be used in obtaining the large populations of hPSC and patient-derived iPSC required for many applications in regenerative and translational medicine.

15.
Polymers (Basel) ; 15(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37688209

ABSTRACT

Quantification of the biodegradability of soil water superabsorbents is necessary for a reasonable prediction of their stability and functioning. A new methodological approach to assessing the biodegradability of these polymer materials has been implemented on the basis of PASCO (USA) instrumentation for continuous registration of kinetic CO2 emission curves in laboratory incubation experiments with various hydrogels, including the well-known trade brands Aquasorb, Zeba, and innovative Russian Aquapastus composites with an acrylic polymer matrix. Original kinetic models were proposed to describe different types of respiratory curves and calculate half-life indicators of the studied superabsorbents. Comparative analysis of the new approach with the assessment by biological oxygen demand revealed for the first time the significance of CO2 dissolution in the liquid phase of gel structures during their incubation. Experiments have shown a tenfold reduction in half-life up to 0.1-0.3 years for a priori non-biodegradable synthetic superabsorbents under the influence of compost extract. The incorporation of silver ions into Aquapastus innovative composites at a dose of 0.1% or 10 ppm in swollen gel structures effectively increases their stability, prolonging the half-life to 10 years and more, or almost twice the Western stability standard for polymer ameliorants.

16.
Bioengineered ; 14(1): 2252234, 2023 12.
Article in English | MEDLINE | ID: mdl-37712708

ABSTRACT

Membrane technology can play a suitable role in removing pharmaceutical active compounds since it requires low energy and simple operation. Even though membrane technology has progressed for wastewater applications nowadays, modifying membranes to achieve the strong desired membrane performance is still needed. Thus, this study overviews a comprehensive insight into the application of modified polymer membranes to remove pharmaceutical active compounds from wastewater. Biotoxicity of pharmaceutical active compounds is first prescribed to gain deep insight into how membranes can remove pharmaceutical active compounds from wastewater. Then, the behavior of the diffusion mechanism can be concisely determined using mass transfer factor model that represented by ß and B with value up to 2.004 g h mg-1 and 1.833 mg g-1 for organic compounds including pharmaceutical active compounds. The model refers to the adsorption of solute to attach onto acceptor sites of the membrane surface, external mass transport of solute materials from the bulk liquid to the membrane surface, and internal mass transfer to diffuse a solute toward acceptor sites of the membrane surface with evidenced up to 0.999. Different pharmaceutical compounds have different solubility and relates to the membrane hydrophilicity properties and mechanisms. Ultimately, challenges and future recommendations have been presented to view the future need to enhance membrane performance regarding fouling mitigation and recovering compounds. Afterwards, the discussion of this study is projected to play a critical role in advance of better-quality membrane technologies for removing pharmaceutical active compounds from wastewater in an eco-friendly strategy and without damaging the ecosystem.


Subject(s)
Ecosystem , Wastewater , Adsorption , Polymers , Pharmaceutical Preparations
17.
Int J Spine Surg ; 17(S3): S18-S27, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-37748919

ABSTRACT

Degenerative spine disease is increasing in prevalence as the global population ages, indicating a need for targeted therapies and continued innovations. While autograft and allograft have historically demonstrated robust results in spine fusion surgery, they have significant limitations and associated complications such as infection, donor site morbidity and pain, and neurovascular injury. Synthetic grafts may provide similar success while mitigating negative outcomes. A narrative literature review was performed to review available synthetic materials that aim to optimize spinal fusion. The authors specifically address the evolution of synthetics and comment on future trends. Novel synthetic materials currently in use include ceramics, synthetic polymers and peptides, bioactive glasses, and peptide amphiphiles, and the authors focus on their success in both human and animal models, physical properties, advantages, and disadvantages. Advantages include properties of osteoinduction, osteoconduction, and osteogenesis, whereas disadvantages encompass a lack of these properties or growth factor-induced complications. Typically, the use of synthetic materials results in fewer complications and lower costs. While the development and tuning of synthetic materials are ongoing, there are many beneficial alternatives to autografts and allografts with promising fusion results.

18.
Inflamm Regen ; 43(1): 46, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759310

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is one of the most fatal human cancers, but effective therapies remain to be established. Cancer stem cells (CSCs) are highly resistant to anti-cancer drugs and a deeper understanding of their microenvironmental niche has been considered important to provide understanding and solutions to cancer eradication. However, as the CSC niche is composed of a wide variety of biological and physicochemical factors, the development of multidisciplinary tools that recapitulate their complex features is indispensable. Synthetic polymers have been studied as attractive biomaterials due to their tunable biofunctionalities, while hydrogelation technique further renders upon them a diversity of physical properties, making them an attractive tool for analysis of the CSC niche. METHODS: To develop innovative materials that recapitulate the CSC niche in pancreatic cancers, we performed polymer microarray analysis to identify niche-mimicking scaffolds that preferentially supported the growth of CSCs. The niche-mimicking activity of the identified polymers was further optimized by polyethylene glycol (PEG)-based hydrogelation. To reveal the biological mechanisms behind the activity of the optimized hydrogels towards CSCs, proteins binding onto the hydrogel were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and the potential therapeutic targets were validated by looking at gene expression and patients' outcome in the TCGA database. RESULTS: PA531, a heteropolymer composed of 2-methoxyethyl methacrylate (MEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) (5.5:4.5) that specifically supports the growth and maintenance of CSCs was identified by polymer microarray screening using the human PAAD cell line KLM1. The polymer PA531 was converted into five hydrogels (PA531-HG1 to HG5) and developed to give an optimized scaffold with the highest CSC niche-mimicking activities. From this polymer that recapitulated CSC binding and control, the proteins fetuin-B and angiotensinogen were identified as candidate target molecules with clinical significance due to the correlation between gene expression levels and prognosis in PAAD patients and the proteins associated with the niche-mimicking polymer. CONCLUSION: This study screened for biofunctional polymers suitable for recapitulation of the pancreatic CSC niche and one hydrogel with high niche-mimicking abilities was successfully fabricated. Two soluble factors with clinical significance were identified as potential candidates for biomarkers and therapeutic targets in pancreatic cancers. Such a biomaterial-based approach could be a new platform in drug discovery and therapy development against CSCs, via targeting of their niche.

19.
Braz J Microbiol ; 54(4): 3211-3220, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37651088

ABSTRACT

The aim of this study was to evaluate the antimicrobial efficacy of polyhexamethylene hydrochloride guanidine (PHMGH) compared to chlorhexidine digluconate (CLX) for use as an oral antiseptic during dental procedures in wild cats. This research is crucial due to limited information on the diversity of oral microorganisms in wild cats and the detrimental local and systemic effects of oral diseases, which highlights the importance of improving prevention and treatment strategies. Samples were collected from the oral cavities of four Puma concolor, one Panthera onca, and one Panthera leo, and the number of colony-forming units per milliliter (CFU/mL) was counted and semi-automatically identified. The antimicrobial susceptibility profile of bacterial isolates was determined using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill kinetics of PHMGH and CLX. A total of 16 bacterial isolates were identified, consisting of six Gram-positive and 10 Gram-negative. PHMGH displayed MIC and MBC from 0.24 to 125.00 µg/mL, lower than those of CLX against three isolates. Time-kill kinetics showed that PHMGH reduced the microbial load by over 90% for all microorganisms within 30 min, whereas CLX did not. Only two Gram-positive isolates exposed to the polymer showed incomplete elimination after 60 min of contact. The results could aid in the development of effective prevention and treatment strategies for oral diseases in large felids. PHMGH showed promising potential at low concentrations and short contact times compared to the commercial product CLX, making it a possible active ingredient in oral antiseptic products for veterinary use in the future.


Subject(s)
Anti-Infective Agents, Local , Anti-Infective Agents, Local/pharmacology , Guanidine , Chlorhexidine/pharmacology , Guanidines/pharmacology , Microbial Sensitivity Tests
20.
Materials (Basel) ; 16(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570163

ABSTRACT

The treatment of skin wounds caused by trauma and pathophysiological disorders has been a growing healthcare challenge, posing a great economic burden worldwide. The use of appropriate wound dressings can help to facilitate the repair and healing rate of defective skin. Natural polymer biomaterials such as collagen and hyaluronic acid with excellent biocompatibility have been shown to promote wound healing and the restoration of skin. However, the low mechanical properties and fast degradation rate have limited their applications. Skin wound dressings based on biodegradable and biocompatible synthetic polymers can not only overcome the shortcomings of natural polymer biomaterials but also possess favorable properties for applications in the treatment of skin wounds. Herein, we listed several biodegradable and biocompatible synthetic polymers used as wound dressing materials, such as PVA, PCL, PLA, PLGA, PU, and PEO/PEG, focusing on their composition, fabrication techniques, and functions promoting wound healing. Additionally, the future development prospects of synthetic biodegradable polymer-based wound dressings are put forward. Our review aims to provide new insights for the further development of wound dressings using synthetic biodegradable polymers.

SELECTION OF CITATIONS
SEARCH DETAIL