Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Front Microbiol ; 15: 1412318, 2024.
Article in English | MEDLINE | ID: mdl-39161601

ABSTRACT

Despite the highly conserved nature of the genetic code, the frequency of usage of each codon can vary significantly. The evolution of codon usage is shaped by two main evolutionary forces: mutational bias and selection pressures. These pressures can be driven by environmental factors, but also by the need for efficient translation, which depends heavily on the concentration of transfer RNAs (tRNAs) within the cell. The data presented here supports the proposal that tRNA modifications play a key role in shaping the overall preference of codon usage in proteobacteria. Interestingly, some codons, such as CGA and AGG (encoding arginine), exhibit a surprisingly low level of variation in their frequency of usage, even across genomes with differing GC content. These findings suggest that the evolution of GC content in proteobacterial genomes might be primarily driven by changes in the usage of a specific subset of codons, whose usage is itself influenced by tRNA modifications.

2.
Article in English | MEDLINE | ID: mdl-38647129

ABSTRACT

Mitochondrial DNA is a valuable tool for population genetics and evolutionary studies in a wide range of organisms. With advancements in sequencing techniques, it's now possible to gain deeper insights into this molecule. By understanding how many genes there are, how they're organized within the molecule, identifying the presence of spacers, and analyzing the composition of the D-Loop, we can better grasp the rearrangements that play a crucial role in the evolutionary dynamics of mitochondrial DNA. Additionally, phylogenetic analyses benefit significantly from having access to a larger pool of mtDNA genes. This wealth of genetic information allows for the establishment of evolutionary relationships with greater accuracy than ever before, providing a more robust framework than analyses based on a limited number of genes. Studies on mitogenomes belonging to the family Formicidae have proven promising, enabling the identification of gene rearrangements and enhancing our understanding of the internal relationships within the group. Despite this, the number of mitogenomes available for the subfamily Ponerinae is still limited, and here we present for the first time the complete mitogenome of Odontomachus. Our data reveal a gene duplication event in Formicidae, the first involving trnV, and new gene arrangements involving the trnM-trnI-trnQ and trnW-trnC-trnY clusters, suggesting a possible synapomorphy for the genus. Our phylogenetic analysis using the PCGs available for Formicidae supports the monophyly of the subfamily Ponerinae and sheds light on the relationship between Odontomachus and Pachycondyla.

3.
Front Bioinform ; 4: 1293412, 2024.
Article in English | MEDLINE | ID: mdl-38357577

ABSTRACT

In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.

4.
Braz. j. biol ; 84: e266924, 2024. tab, ilus
Article in English | VETINDEX | ID: biblio-1420688

ABSTRACT

Heart and blood vessel disorders, such as coronary heart disease, brain vessel disease, rheumatic heart disease, and others, are together referred to as cardiovascular disease (CVD). In this study, we sought to determine how mitochondrial Leucine Transfer RNA genes and CVDs are related (MT-L1 and MT-L2). From CVD patients in Peshawar, a total of 27 saliva samples were taken. Leu-tRNA genes expressed by mitochondria were amplified using polymerase chain reaction after DNA was removed. Ten samples were sent for sequencing after PCR and gene cleaning. We obtained all of the sequenced results, which were subsequently aligned and evaluated against the mitochondrial revised Cambridge Reference Sequence (rCRS). However, in our sequenced samples, Leu-tRNA MT-L1 and MT-L2 genes were determined to be unaltered. Thus, it is suggested that a large population be taken into account while screening for mutations in the mitochondrial encoded Leu-tRNA MT-L1 and MT-L2 genes of cardiac patients in areas of Pakistan. Additionally, it is recommended that patients with cardiac problems should also have other mitochondrial encoded genes checked for potential mutations. This could result in the identification of genetic markers that could be used for early CVD screening in Pakistan.


Distúrbios do coração e dos vasos sanguíneos, como doença cardíaca coronária, doença dos vasos cerebrais, doença cardíaca reumática entre outros, são referidos juntos como doença cardiovascular (DCV). Neste estudo, procuramos determinar como os genes mitocondriais do RNA de transferência de leucina e as DCVs estão relacionados (MT-L1 e MT-L2). Foi coletado um total de 27 amostras de saliva de pacientes com DCV em Peshawar. Genes de Leu-tRNA expressos por mitocôndrias foram amplificados usando reação em cadeia da polimerase (PCR) após a remoção do DNA. Dez amostras foram enviadas para sequenciamento após PCR e limpeza gênica. Obtivemos todos os resultados sequenciados, que foram posteriormente alinhados e avaliados em comparação com a Sequência de Referência de Cambridge revisada (rCRS). No entanto, em nossas amostras sequenciadas, os genes Leu-tRNA MT-L1 e MT-L2 foram determinados como inalterados. Assim, sugere-se que uma grande população seja levada em consideração durante a triagem de mutações nos genes Leu-tRNA MT-L1 e MT-L2 mitocondriais codificados de pacientes cardíacos em áreas do Paquistão. Além disso, recomenda-se que outros genes mitocondriais codificados de pacientes com problemas cardíacos também sejam verificados quanto a possíveis mutações. Isso pode resultar na identificação de marcadores genéticos que podem ser usados para triagem precoce de DCV no Paquistão.


Subject(s)
DNA, Mitochondrial , DNA Mutational Analysis , Cardiovascular Diseases , Genetic Markers , Pakistan
5.
Genes (Basel) ; 14(12)2023 11 29.
Article in English | MEDLINE | ID: mdl-38136981

ABSTRACT

It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 species (13 bacteria and 13 archaea). We found that the free energy of RNY hairpins was consistently lower than that of their corresponding shuffled controls. We found traces of the three ribosomal RNAs (16S, 23S, and 5S), tRNAs, 6S RNA, and the RNA moieties of RNase P and the signal recognition particle. Nevertheless, at this stage of evolution there was no genetic code (as seen in the absence of the peptidyl transferase centre and any vestiges of the anti-Shine-Dalgarno sequence). Interestingly, we detected the anticodons of both glycine (GCC) and threonine (GGU) in the hairpins of proto-tRNA.


Subject(s)
Evolution, Molecular , Genetic Code , RNA, Transfer/genetics , RNA/genetics , Bacteria/genetics
6.
Mol Microbiol ; 120(6): 893-905, 2023 12.
Article in English | MEDLINE | ID: mdl-37864403

ABSTRACT

In the yeast Saccharomyces cerevisiae, the absence of the pseudouridine synthase Pus3/Deg1, which modifies tRNA positions 38 and 39, results in increased lipid droplet (LD) content and translational defects. In addition, starvation-like transcriptome alterations and induced protein aggregation were observed. In this study, we show that the deg1 mutant increases specific misreading errors. This could lead to altered expression of the main regulators of neutral lipid synthesis which are the acetyl-CoA carboxylase (Acc1), an enzyme that catalyzes a key step in fatty acid synthesis, and its regulator, the Snf1/AMPK kinase. We demonstrate that upregulation of the neutral lipid content of LD in the deg1 mutant is achieved by a mechanism operating in parallel to the known Snf1/AMPK kinase-dependent phosphoregulation of Acc1. While in wild-type cells removal of the regulatory phosphorylation site (Ser-1157) in Acc1 results in strong upregulation of triacylglycerol (TG), but not steryl esters (SE), the deg1 mutation more specifically upregulates SE levels. In order to elucidate if other lipid species are affected, we compared the lipidomes of wild type and deg1 mutants, revealing multiple altered lipid species. In particular, in the exponential phase of growth, the deg1 mutant shows a reduction in the pool of phospholipids, indicating a compromised capacity to mobilize acyl-CoA from storage lipids. We conclude that Deg1 plays a key role in the coordination of lipid storage and mobilization, which in turn influences lipid homeostasis. The lipidomic effects in the deg1 mutant may be indirect outcomes of the activation of various stress responses resulting from protein aggregation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , AMP-Activated Protein Kinase Kinases , Lipidomics , Lipids , Protein Aggregates , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
7.
Life (Basel) ; 13(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37895385

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) originated from an ancestral bidirectional gene (mirror symmetry), and through the evolution of the genetic code, the twenty aaRSs exhibit a symmetrical distribution in a 6-dimensional hypercube of the Standard Genetic Code. In this work, we assume a primeval RNY code and the Extended Genetic RNA code type II, which includes codons of the types YNY, YNR, and RNR. Each of the four subsets of codons can be represented in a 4-dimensional hypercube. Altogether, these 4 subcodes constitute the 6-dimensional representation of the SGC. We identify the aaRSs symmetry groups in each of these hypercubes. We show that each of the four hypercubes contains the following sets of symmetries for the two known Classes of synthetases: RNY: dihedral group of order 4; YNY: binary group; YNR: amplified octahedral group; and RNR: binary group. We demonstrate that for each hypercube, the group of symmetries in Class 1 is the same as the group of symmetries in Class 2. The biological implications of these findings are discussed.

8.
Front Neurol ; 14: 878446, 2023.
Article in English | MEDLINE | ID: mdl-37456626

ABSTRACT

Objectives: To report the first Mexican case with two novel AARS2 mutations causing primary ovarian failure, uterus infantilis, and early-onset dementia secondary to leukoencephalopathy. Methods: Detailed clinical, clinimetric, neuroimaging features, muscle biopsy with biochemical assays of the main oxidative phosphorylation complexes activities, and molecular studies were performed on samples from a Mexican female. Results: We present a 41-year-old female patient with learning difficulties since childhood and primary amenorrhea who developed severe cognitive, motor, and behavioral impairment in early adulthood. Neuroimaging studies revealed frontal leukoencephalopathy with hypometabolism at the fronto-cerebellar cortex and caudate nucleus. Uterus infantilis was detected on ultrasound study. Clinical exome sequencing identified two novel variants, NM_020745:c.2864G>A (p.W955*) and NM_020745:c.1036C>A (p.P346T, p.P346Wfs*18), in AARS2. Histopathological and biochemical studies on muscle biopsy revealed mitochondrial disorder with cytochrome C oxidase (COX) deficiency. Conclusions: Several adult-onset cases of leukoencephalopathy and ovarian failure associated with AARS2 variants have been reported. To our best knowledge, none of them showed uterus infantilis. Here we enlarge the genetic and phenotypic spectrum of AARS2-related dementia with leukoencephalopathy and ovarian failure and contribute with detailed clinical, clinometric, neuroimaging, and molecular studies to disease and novel molecular variants characterization.

9.
Theory Biosci ; 142(3): 211-219, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37402895

ABSTRACT

In this work, we formulate the following question: How the distribution of aminoacyl-tRNA synthetases (aaRSs) went from an ancestral bidirectional gene (mirror symmetry) to the symmetrical distribution of aaRSs in a six-dimensional hypercube of the Standard Genetic Code (SGC)? We assume a primeval RNY code, two Extended Genetic RNA codes type 1 and 2, and the SGC. We outline the types of symmetries of the distribution of aaRSs in each code. The symmetry groups of aaRSs in each code are described, until the symmetries of the SGC display a mirror symmetry. Considering both Extended RNA codes the 20 aaRSs were already present before the Last Universal Ancestor. These findings reveal intricacies in the diversification of aaRSs accompanied by the evolution of the genetic code.


Subject(s)
Amino Acyl-tRNA Synthetases , Evolution, Molecular , Genetic Code , Amino Acyl-tRNA Synthetases/genetics , RNA, Transfer/genetics , RNA
10.
Phage (New Rochelle) ; 4(2): 99-107, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37350993

ABSTRACT

Background: Carbapenem-resistant Klebsiella pneumoniae, particularly isolates classified as sequence-type 258 (ST258), are multidrug-resistant strains that are strongly associated with poor-prognosis nosocomial infections, as current therapeutic options are limited and ineffective. In recent years, phage therapy has emerged as a promising treatment option for these scenarios. Methodology and Results: We report the isolation and characterization of three new phages against Klebsiella pneumoniae ST258 strains recovered from Machángara river wastewater. These new members of the Ackermannviridae family showed stability over a wide temperature and pH range and burst sizes ranging from 6 to 44 plaque-forming units per bacteria. Their genomes were about 157 kilobases, with an average guanine-cytosine content of 46.4% and showed presence of several transfer RNAs, which also allowed us to predict in silico a lytic replicative cycle due to the presence of endolysins and lysozymes. Conclusion: Three lytic phages of Ackermannviridae family were recovered against Klebsiella pneumoniae ST258 strains from sewage; however, further characterization is needed for future consideration as therapeutic alternatives.

11.
J Med Entomol ; 60(4): 656-663, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37071084

ABSTRACT

Lucilia eximia (Wiedemann, 1819) (Diptera: Calliphoridae) is a blowfly with medical and forensic importance that shows genetic and color variation, however, these variations have not justified the description of new species. But in forensic entomology an accurate identification of species and subpopulations is crucial. We explored the genetic variation of L. eximia from eight localities, in five natural regions in Colombia using two mitochondrial fragments, including the standard locus for insect identification COI and the Cytb-tRNA-Ser-ND1 region. We found significant differentiation at COI and Cytb-tRNA-Ser-ND1 level, characterizing two lineages and revealing a deep and significant genetic split. High values of FST and genetic distances supported the two lineages. The origin of the divergence of L. eximia remains to discover. Examining whether the lineages have diverse ecological and biological behaviors could be a significant impact on the use of L. eximia in forensic and medical science. Our results could have relevant implications for the use of post-mortem interval estimation based on insect evidence, as well as our sequences improve the database used in DNA-based methods for identifying forensically important flies.


Subject(s)
Diptera , Animals , Diptera/genetics , Calliphoridae/genetics , Colombia , DNA , RNA, Transfer
12.
Methods Mol Biol ; 2620: 51-61, 2023.
Article in English | MEDLINE | ID: mdl-37010748

ABSTRACT

To evaluate the posttranslational arginylation of proteins in vivo, we describe a protocol for studying the 14C-Arg incorporation into proteins of cells in culture. The conditions determined for this particular modification contemplate both the biochemical requirements of the enzyme ATE1 and the adjustments that allowed the discrimination between posttranslational arginylation of proteins and de novo synthesis. These conditions are applicable for different cell lines or primary cultures, representing an optimal procedure for the identification and the validation of putative ATE1 substrates.


Subject(s)
Aminoacyltransferases , Aminoacyltransferases/genetics , Protein Processing, Post-Translational , Proteins/metabolism , Cells, Cultured , Cell Line , Arginine/metabolism
13.
Proc Natl Acad Sci U S A ; 120(4): e2216330120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36652478

ABSTRACT

Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.


Subject(s)
RNA, Transfer , RNA , Humans , RNA, Transfer/metabolism , Bacteria/metabolism , Epithelial Cells/metabolism
14.
Front Plant Sci ; 13: 1034419, 2022.
Article in English | MEDLINE | ID: mdl-36466235

ABSTRACT

Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.

15.
Virus Res ; 322: 198949, 2022 12.
Article in English | MEDLINE | ID: mdl-36181979

ABSTRACT

Transfer RNAs (tRNAs) genes are both coded for and arranged along some viral genomes representing the entire virosphere and seem to play different biological functions during infection, other than transferring the correct amino acid to a growing peptide chain. Baculovirus genome description and annotation has focused mostly on protein-coding genes, microRNA, and homologous regions. Here we carried out a large-scale in silico search for putative tRNA genes in baculovirus genomes. Ninety-six of 257 baculovirus genomes analyzed was found to contain at least one putative tRNA gene. We found great diversity in primary and secondary structure, in location within the genome, in intron presence and size, and in anti-codon identity. In some cases, genes of tRNA-containing genomes were found to have a bias for the codons specified by the tRNAs present in such genomes. Moreover, analysis revealed that most of the putative tRNA genes possessed conserved motifs for tRNA type 2 promoters, including the A-box and B-box motifs with few mismatches from the eukaryotic canonical motifs. From publicly available small RNA deep sequencing datasets of baculovirus-infected insect cells, we found evidence that a putative Autographa californica multiple nucleopolyhedrovirus Gln-tRNA gene was transcribed and modified with the addition of the non-templated 3'-CCA tail found at the end of all tRNAs. Further research is needed to determine the expression and functionality of these viral tRNAs.


Subject(s)
Baculoviridae , RNA, Transfer , Baculoviridae/genetics , RNA, Transfer/genetics , RNA, Transfer/chemistry , Eukaryota/genetics , Base Sequence , Codon
16.
Molecules ; 27(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36014413

ABSTRACT

The use of plant-based products has been shown to efficiently inhibit fungi-mediated diseases in agricultural crops. Here, we extracted and evaluated the composition of noni, Morinda citrifolia L., essential oil and assessed its activities against Stagonosporopsis cucurbitacearum in Cucumis melo L. Using in silico molecular approaches, potential interactions between the essential oil major components and S. cucurbitacearum tyrosine-tRNA ligase were predicted. Finally, we also measured the potential interference of plant physiology (the stomatal conductance and net photosynthesis) mediated by the application of the M. citrifolia essential oil. Chromatographic analysis revealed that octanoic acid (75.8%), hexanoic acid (12.8%), and isobutyl pent-4-enyl carbonate (3.1%) were the major essential oil compounds. Octanoic acid and noni essential oil, when used as preventive measures, reduce fungal mycelial growth at a concentration of 5 mg/mL without causing significant damage to the treated leaves, which reinforces their efficacies as preventive tools against S. cucurbitacearum. Molecular docking analyses predicted very stable interactions between the major essential oil constituents and S. cucurbitacearum tyrosine-tRNA ligase, suggesting the interference of these plant-based molecules upon enzyme activation. Octanoic acid and M. citrifolia essential oil at concentrations of 20 mg/mL decreased the stomatal conductance and net photosynthesis rate of melon plants, resulting in robust phytotoxicity. Collectively, our findings indicated that despite the phytotoxicity risks at higher concentrations, M. citrifolia essential oil and octanoic acid, have potential as alternative tools for the integrative management of S. cucurbitacearum.


Subject(s)
Morinda , Oils, Volatile , Tyrosine-tRNA Ligase , Ascomycota , Caprylates , Molecular Docking Simulation , Morinda/chemistry , Oils, Volatile/pharmacology , Plant Extracts/chemistry
17.
Noncoding RNA ; 8(4)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35893237

ABSTRACT

Trypanosomatids are protozoan parasites that cause devastating vector-borne human diseases. Gene expression regulation of these organisms depends on post-transcriptional control in responding to diverse environments while going through multiple developmental stages of their complex life cycles. In this scenario, non-coding RNAs (ncRNAs) are excellent candidates for a very efficient, quick, and economic strategy to regulate gene expression. The advent of high throughput RNA sequencing technologies show the presence and deregulation of small RNA fragments derived from canonical ncRNAs. This review seeks to depict the ncRNA landscape in trypanosomatids, focusing on the small RNA fragments derived from functional RNA molecules observed in RNA sequencing studies. Small RNA fragments derived from canonical ncRNAs (tsRNAs, snsRNAs, sdRNAs, and sdrRNAs) were identified in trypanosomatids. Some of these RNAs display changes in their levels associated with different environments and developmental stages, demanding further studies to determine their functional characterization and potential roles. Nevertheless, a comprehensive and detailed ncRNA annotation for most trypanosomatid genomes is still needed, allowing better and more extensive comparative and functional studies.

18.
Epigenetics Chromatin ; 15(1): 22, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650626

ABSTRACT

BACKGROUND: Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood. RESULTS: Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using FAIRE-seq approach supported by transmission electron microscopy. We identified differences in T. cruzi genome compartments, putative transcriptional start regions, and virulence factors. In addition, we also detected a developmental chromatin regulation at tRNA loci (tDNA), which could be linked to the intense chromatin remodeling and/or the translation regulatory mechanism required for parasite differentiation. We further integrated the open chromatin profile with public transcriptomic and MNase-seq datasets. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels. CONCLUSION: Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.


Subject(s)
Chromatin , Trypanosoma cruzi , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation , Proteomics/methods , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism
19.
Virus Res ; 316: 198797, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35537574

ABSTRACT

The black armyworm Spodoptera cosmioides is a pest of increasing importance in Cry1Ac-Bt toxin crops and non-Bt crops of soybean and cotton in Brazil. Here we characterized a baculovirus isolated from extracts of S. cosmioides that died with symptoms of nuclear polyhedrosis. The putative novel virus exhibited polyhedral occlusion bodies (OBs) with virions containing multiple rod-shaped nucleocapsids, characteristic of alphabaculoviruses. The virus isolate was named Spodoptera cosmioides nucleopolyhedrovirus isolate CNPSo-72 (SpcoNPV-CNPSo-72). SpcoNPV-CNPSo-72 was lethal to third-instar S. cosmioides caterpillars but not to S. frugiperda under the tested viral concentrations. Moreover, SpcoNPV-CNPSo-72 contained a circular 147,763 bp long genome and a G + C content of 44.8% with 151 annotated ORFs (10 unique for baculovirus) and five homologous regions (hrs). The 38 currently defined baculovirus core genes were found in the SpcoNPV-CNPSo-72 genome. After phylogenetic analysis, the novel virus was found to be closely related to other members of Alphabaculovirus, especially to the Spodoptera-infecting viruses, which included Spodoptera eridania nucleopolyhedrovirus isolate 251, Spodoptera litura nucleopolyhedrovirus isolate II, Spodoptera exigua multiple nucleopolyhedrovirus isolate US-1, Spodoptera eridania nucleopolyhedrovirus isolate CNPSo-165, and Spodoptera frugiperda multiple nucleopolyhedrovirus isolate 19. Surprisingly, the new baculoviral genome was found to code for a putative arginine-associated tRNA gene with a predicted intronic sequence of 105 nt. The gene was found inside the bjdp CDS. Overall, baculoviruses are pathogens that lethally infect insect larvae and their study allows a better understanding of large DNA virus evolution, which provides important insights for the development and improvement of biological control agents.


Subject(s)
Moths , Nucleopolyhedroviruses , Animals , Baculoviridae/genetics , Genome, Viral , Genomics , Larva , Phylogeny , Spodoptera/genetics
20.
Planta ; 255(3): 57, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35113261

ABSTRACT

MAIN CONCLUSION: The plastome of Melocactus glaucescens shows unique rearrangements, IR expansion, and unprecedented gene losses in Cactaceae. Our data indicate tRNA import from the cytosol to the plastids in this species. Cactaceae represents one of the richest families in keystone species of arid and semiarid biomes. This family shows various specific features comprehending morphology, anatomy, and metabolism, which allow them to grow under unfavorable environmental conditions. The subfamily Cactoideae contains the most divergence of species, which are highly variable in growth habit and morphology. This subfamily includes the endangered species Melocactus glaucescens (tribe Cereeae), which is a cactus endemic to the biome Caatinga in Brazil. Aiming to analyze the plastid evolution and develop molecular markers, we sequenced and analyzed in detail the plastome of M. glaucescens. Our analyses revealed that the M. glaucescens plastome is the most divergent among the species of the family Cactaceae sequenced so far. We characterized here unique rearrangements, expanded IRs containing an unusual set of genes, and several gene losses. Some genes related to the ndh complex were lost during the plastome evolution, while others have lost their functionality. Additionally, the loss of three tRNA genes (trnA-UGC, trnV-UAC, and trnV-GAC) suggests tRNA import from the cytosol to the plastids in M. glaucescens. Moreover, we identified high gene divergence, several putative positive signatures, and possible unique RNA-editing sites. Furthermore, we mapped 169 SSRs in the plastome of M. glaucescens, which are helpful to access the genetic diversity of natural populations and conservation strategies. Finally, our data provide new insights into the evolution of plastids in Cactaceae, which is an outstanding lineage adapted to extreme environmental conditions and a notorious example of the atypical evolution of plastomes.


Subject(s)
Cactaceae , Evolution, Molecular , Cactaceae/genetics , Phylogeny , Plastids/genetics , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL