Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Cancer Invest ; 42(6): 469-477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38913915

ABSTRACT

We examined Fusobacterium nucreatum (F. nucleatum) and whole Fusobacterium species (Pan-fusobacterium) in non-neoplastic Barrett's esophagus (BE) from patients without cancer (n = 67; N group), with esophageal adenocarcinoma (EAC) (n = 27) and EAC tissue (n = 22). F. nucleatum was only detectable in 22.7% of EAC tissue. Pan-fusobacterium was enriched in EAC tissue and associated with aggressive clinicopathological features. Amount of Pan-fusobacterium in non-neoplastic BE was correlated with presence of hital hernia and telomere shortening. The result suggested potential association of Fusobacterium species in EAC and BE, featuring clinicpathological and molecular features.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Humans , Esophageal Neoplasms/microbiology , Esophageal Neoplasms/pathology , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Barrett Esophagus/microbiology , Barrett Esophagus/pathology , Male , Middle Aged , Female , Aged , Fusobacterium/isolation & purification , Fusobacterium/genetics , Fusobacterium nucleatum/isolation & purification , Adult
2.
Biomolecules ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38927059

ABSTRACT

Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Tumor Microenvironment/genetics , Signal Transduction , Animals
3.
Arch Toxicol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744709

ABSTRACT

Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated ß-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of ß-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate ß-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1ß secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.

4.
Hum Immunol ; : 110812, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38755031

ABSTRACT

Generalized vitiligo(GV) is a skin depigmenting condition due to loss of melanocytes. Regulatory T cells(Tregs), responsible for peripheral tolerance, show altered numbers and functions in GV patients, likely influenced by the aging process. Therefore, the present study was focused on measuring the relative telomere length of Tregs in 96 GV patients and 90 controls by qPCR, along with correlation of relative telomere length with in vitro Treg suppressive capacity. Interestingly, we found significantly decreased relative telomere length in Tregs of GV patients as compared to controls(p = 0.0001). Additionally, age based-analysis suggested significant decrease in relative telomere length in elderly GV patients(>40 years) in comparison to young GV patients(0-20 years; p = 0.0027). Furthermore, age of onset analysis suggested for reduced relative telomere length in early onset GV patients (0-20 years) in comparison to late onset GV patients(>40 years; p = 0.0036). The correlation analysis suggested positive correlation for relative telomere length with in vitro Tregs suppressive capacity(r = 0.68 & r = 0.45; p < 0.0001). Additionally, the in vitro Tregs suppressive capacity was significantly reduced in elderly GV patients(p = 0.003) and early onset GV patients(p = 0.0074). Overall, our study for the first time demonstrated that, the Tregs ageing due to telomere shortening may be responsible for altered Treg functions and number.

5.
Mutat Res Rev Mutat Res ; 794: 108507, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38802042

ABSTRACT

Given that telomeres play a fundamental role in maintaining genomic stability, the study of the chromosomal aberrations involving telomeric sequences is a topic of considerable research interest. In recent years, the scoring of these types of aberrations has been used in vertebrate cells, particularly human cells, to evaluate the effects of genotoxic agents on telomeres and the involvement of telomeric sequences on chromosomal aberrations. Currently, chromosomal aberrations involving telomeric sequences are evaluated in peripheral blood lymphocytes or immortalized cell lines, using telomere or telomere plus centromere fluorescence in situ hybridization (FISH) with Peptide Nucleic Acid (PNA) probes (PNA-FISH). The telomere PNA probe is more efficient in the detection of telomeric sequences than conventional FISH with a telomere DNA probe. In addition, the intensity of the telomeric PNA-FISH probe signal is directly correlated with the number of telomeric repeats. Therefore, use of this type of probe can identify chromosomal aberrations involving telomeres as well as determine the telomere length of the sample. There are several mistakes and inconsistencies in the literature regarding the identification of telomere aberrations, which prevent accurate scoring and data comparison between different publications concerning these types of aberrations. The aim of this review is to clarify these issues, and provide proper terminology and criteria for the identification, scoring, and analysis of telomere aberrations.

6.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584235

ABSTRACT

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Subject(s)
Giardia lamblia , Giardiasis , Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Giardiasis/parasitology , Giardia/genetics , Telomere/genetics , Giardia lamblia/genetics , Giardia lamblia/metabolism
7.
Biomedicines ; 12(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38540177

ABSTRACT

Differences/Disorders of sex development (DSDs) are conditions in which the development of chromosomal, gonadal, and anatomical sexes is atypical. DSDs are relatively rare, but their incidence is becoming alarmingly common in sub-Saharan Africa (SSA). Their etiologies and mechanisms are poorly understood. Therefore, we have investigated cytogenetic profiles, including telomere dysfunction, in a retrospective cohort of Senegalese DSD patients. MATERIALS AND METHODS: Peripheral blood lymphocytes were sampled from 35 DSD patients (mean age: 3.3 years; range 0-18 years) admitted to two hospital centers in Dakar. Peripheral blood lymphocytes from 150 healthy donors were used as a control. Conventional cytogenetics, telomere, and centromere staining followed by multiplex FISH, as well as FISH with SRY-specific probes, were employed. RESULTS: Cytogenetic analysis identified 19 male and 13 female patients with apparently normal karyotypes, two patients with Turner syndrome, and one patient with Klinefelter syndrome. Additional structural chromosome aberrations were detected in 22% of the patients (8/35). Telomere analysis revealed a reduction in mean telomere lengths of DSD patients compared to those of healthy donors of similar age. This reduction in telomere length was associated with an increased rate of telomere aberrations (telomere loss and the formation of telomere doublets) and the presence of additional chromosomal aberrations. CONCLUSIONS: To the best of our knowledge, this study is the first to demonstrate a correlation between telomere dysfunction and DSDs. Further studies may reveal the link between telomere dysfunction and possible mechanisms involved in the disease itself, such as DNA repair deficiency or specific gene mutations. The present study demonstrates the relevance of implementing telomere analysis in prenatal tests as well as in diagnosed genetic DSD disorders.

8.
Mech Ageing Dev ; 218: 111913, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307343

ABSTRACT

As women delay childbearing due to socioeconomic reasons, understanding molecular mechanisms decreasing oocyte quantity and quality during ovarian aging becomes increasingly important. The ovary undergoes biological aging at a higher pace when compared to other organs. As is known, telomeres play crucial roles in maintaining genomic integrity, and their shortening owing to increased reactive oxygen species, consecutive cellular divisions, genetic and epigenetic alterations is associated with loss of developmental competence of oocytes. Novel interventions such as antioxidant treatments and regulation of gene expression are being investigated to prevent or rescue telomere attrition and thereby oocyte aging. Herein, potential factors and molecular mechanisms causing telomere shortening in aging oocytes were comprehensively reviewed. For the purpose of extending reproductive lifespan, possible therapeutic interventions to protect telomere length were also discussed.


Subject(s)
Aging , Telomere Shortening , Female , Humans , Aging/genetics , Oocytes/physiology , Ovary/metabolism , Telomere
9.
Mol Neurobiol ; 61(8): 5868-5881, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38240992

ABSTRACT

Maintaining the telomere length is decisive for the viability and homeostasis process of all the cells of an organism, including human glial cells. Telomere shortening of microglial cells has been widely associated with the onset and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Additionally, traumatic brain injury appears to have a positive correlation with the telomere-shortening process of microglia, and telomere length can be used as a non-invasive biomarker for the clinical management of these patients. Moreover, telomere involvement through telomerase reactivation and homologous recombination also known as the alternative lengthening of telomeres (ALT) has been described in gliomagenesis pathways, and particular focus has been given in the translational significance of these mechanisms in gliomas diagnosis and prognostic classification. Finally, glia telomere shortening is implicated in some psychiatric diseases. Given that telomere dysfunction of glial cells is involved in the central nervous system (CNS) disease pathogenesis, it represents a promising drug target that could lead to the incorporation of new tools in the medicinal arsenal for the management of so far incurable conditions.


Subject(s)
Central Nervous System Diseases , Neuroglia , Telomere , Humans , Telomere/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Animals , Central Nervous System Diseases/metabolism , Central Nervous System Diseases/pathology
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167025, 2024 03.
Article in English | MEDLINE | ID: mdl-38237741

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSC) are an integral part of the BM niche that is essential to maintain hematopoietic homeostasis. In aplastic anemia (AA), a few studies have reported phenotypic defects in the BM-MSC, such as reduced proliferation, imbalanced differentiation, and apoptosis; however, the alterations at the molecular level need to be better characterized. Therefore, the current study aims to identify the causative factors underlying the compromised functions of AA BM-MSC that might eventually be contributing to the AA pathobiology. METHODS: We performed RNA sequencing (RNA-Seq) using the Illumina platform to comprehend the distinction between the transcriptional landscape of AA and control BM-MSC. Further, we validated the alterations observed in senescence by Senescence- associated beta-galactosidase (SA -ß-gal) assay, DNA damage by γH2AX staining, and telomere attrition by relative telomere length assessment and telomerase activity assay. We used qRT-PCR to analyze changes in some of the genes associated with these molecular mechanisms. RESULTS: The transcriptome profiling revealed enrichment of senescence-associated genes and pathways in AA BM-MSC. The senescent phenotype of AA BM-MSC was accompanied by enhanced SA -ß-gal activity and elevated expression of senescence associated genes TP53, PARP1, and CDKN1A. Further, we observed increased γH2AX foci indicating DNA damage, reduced telomere length, and diminished telomerase activity in the AA BM-MSC. CONCLUSION: Our results highlight that AA BM-MSC have a senescent phenotype accompanied by other cellular defects like DNA damage and telomere attrition, which are most likely driving the senescent phenotype of AA BM-MSC thus hampering their hematopoiesis supporting properties as observed in AA.


Subject(s)
Anemia, Aplastic , Mesenchymal Stem Cells , Telomerase , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/metabolism , Telomerase/genetics , Telomerase/metabolism , Mesenchymal Stem Cells/metabolism , Telomere/genetics , DNA Repair
11.
J Exp Zool A Ecol Integr Physiol ; 341(4): 338-344, 2024 05.
Article in English | MEDLINE | ID: mdl-38258326

ABSTRACT

Telomere length and dynamics are commonly used biomarkers of somatic state, yet the role of telomeres underlying the aging process is still debated. Indeed, to date, empirical evidence for an association between age and telomere length is mixed. Here, we test if the age-dependency of the association between age and telomere length can provide a potential explanation for the reported inconsistencies across studies. To this end, we quantified telomere length by telomere restriction fragment analysis in two groups of Japanese quail (Coturnix japonica) that differed in their age distribution. One group consisted of young adults only, whereas the second group consisted of adults across a wide range of ages. In the young adults group, there was a highly significant negative association between telomere length and age, whereas no association between age and telomere length was found in the all-ages adults group. This difference between groups was not due to telomere length-dependent selective disappearance. Our results shows that the association between telomere length and age is age-dependent and suggest that the costs and benefits associated with telomere maintenance are dynamic across an individual's life course.


Subject(s)
Coturnix , Telomere Homeostasis , Animals , Telomere Shortening , Biomarkers , Telomere
12.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276581

ABSTRACT

Aging is a well-known factor that accelerates brain deterioration, resulting in impaired learning and memory functions. This current study evaluated the potential of an extract of Alternanthera philoxeroides (AP), an edible flavonoid-rich plant, to ameliorate D-galactose-induced brain aging in male mice. Chronic administration of D-galactose (150 mg/kg/day) in mice mimicked the characteristics of aging by accelerating senescence via downregulation of the following telomere-regulating factors: mouse telomerase reverse transcriptase (mTERT) and mouse telomeric repeat-binding factors 1 (mTRF1) and 2 (mTRF2). D-galactose also decreased the activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), while increasing expression of neuroinflammatory cytokines in the frontal cortex and hippocampus. Daily treatment of D-galactose-induced aging mice with AP at 250 and 500 mg/kg/day or vitamin E (100 mg/kg/day) significantly increased the activities of SOD and CAT, as well as expression of mTERT, mTRF1, and mTRF2, which are involved in telomere stabilization, but decreased the levels of proinflammatory cytokines IL-1ß, IL-6, and TNF-α. In the behavioral portion of the study, AP improved aging-related cognitive deficits in short-term memory as shown by the Y-maze task and the novel object recognition test (NORT) and long-term memory as shown by the Morris water maze test (MWMT). The flavones kaempferol-O-glucoside (1), quercetin (2), alternanthin B (3), demethyltorosaflavone D (4), and chrysoeriol-7-O-rhamnoside (5), which could be responsible for the observed effects of AP in the D-galactose-induced aging mice, were identified by HPLC analysis.


Subject(s)
Antioxidants , Galactose , Mice , Animals , Antioxidants/metabolism , Galactose/metabolism , Telomere Shortening , Neuroinflammatory Diseases , Maze Learning , Aging , Brain/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Superoxide Dismutase/metabolism , Cytokines/metabolism , Oxidative Stress
13.
BMC Psychiatry ; 23(1): 947, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102621

ABSTRACT

INTRODUCTION: Telomeres protect the ends of chromosomes, and shorter leukocyte telomeres are associated with major group diseases. Maternal psychological stress may be related to the shortening of telomeres in infants. This systematic review and meta-analysis set out to consolidate the varying effect sizes found in studies of maternal psychological stress and telomere length (TL) in newborns and identify moderators of the relationship between stress during pregnancy and newborn TL. METHODS: Our systematic review was registered in Prospero. Six databases (PubMed, Scopus, Embase, PsycINFO, Web of Science, and CINAHL Complete) were searched for records in English from inception to February 10, 2023. Observational studies were included that measured the relationship of psychological stress of the mother during pregnancy on the TL of the newborn. The Newcastle-Ottawa quality assessment scale was used to assess the quality of the included studies. A random-effect model was selected. Statistical analysis performed by Stata software version 17. RESULTS: Eight studies were included for qualitative and four for quantitative analysis. There was an inverse statistically significant relationship between maternal stress and newborn TL; A one score increase in maternal psychological stress resulted in a 0.04 decrease in the TL of the newborn (B = -0.04, 95% CI = [-0.08, 0.00], p = 0.05). Selectivity analysis showed that the pooled effect size was sensitive to one study; After removing this study, the pooled effect size remained significant (B = -0.06, 95% CI = [-0. 10, -0.02], p < 0.001). CONCLUSION: Physiological and environmental factors can significantly affect the TL of newborns. Our results support a significant impact of maternal psychological stress on the TL of a newborn. This association demonstrates the significance of stress in influencing the telomere length, which can be a contributing factor in the infant's future. Therefore, recognizing this association is crucial for understanding and addressing potential health risks and necessitates the need for additional future studies to validate our findings.


Subject(s)
Mothers , Telomere , Infant , Pregnancy , Female , Humans , Infant, Newborn , Stress, Psychological/complications , Telomere Shortening , Research Design
14.
J Pers Med ; 13(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003922

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of interstitial lung diseases (ILDs), marked by an ongoing, chronic fibrotic process within the lung tissue. IPF leads to an irreversible deterioration of lung function, ultimately resulting in an increased mortality rate. Therefore, the focus has shifted towards the biomarkers that might contribute to the early diagnosis, risk assessment, prognosis, and tracking of the treatment progress, including those associated with epithelial injury. METHODS: We conducted this review through a systematic search of the relevant literature using established databases such as PubMed, Scopus, and Web of Science. Selected articles were assessed, with data extracted and synthesized to provide an overview of the current understanding of the existing biomarkers for IPF. RESULTS: Signs of epithelial cell damage hold promise as relevant biomarkers for IPF, consequently offering valuable support in its clinical care. Their global and standardized utilization remains limited due to a lack of comprehensive information of their implications in IPF. CONCLUSIONS: Recognizing the aggressive nature of IPF among interstitial lung diseases and its profound impact on lung function and mortality, the exploration of biomarkers becomes pivotal for early diagnosis, risk assessment, prognostic evaluation, and therapy monitoring.

15.
BMC Pregnancy Childbirth ; 23(1): 733, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848852

ABSTRACT

BACKGROUND: Women's reproduction requires increased energy demands, which consequently may lead to cellular damage and aging. Hence, Telomere Length (TL), a biomarker of biological aging and health status may possibly serve as a biomarker of reproductive effort. The aim of this systematic review is to evaluate telomere dynamics throughout pregnancy and the association between parity and TL. METHODS: A systematic search was conducted across seven databases including CINAHL, Cochrane, PsycINFO, Proquest, PubMed; Scopus; and Web of Science, using keywords and MeSH descriptors of parity and TL. Predefined inclusion and exclusion criteria were used to screen abstracts and titles. After the removal of duplicates, 3431 articles were included in the primary screening, narrowed to 194 articles included in the full-text screening. Consensus was reached for the 14 studies that were included in the final review, and the Newcastle-Ottawa scale (NOS) was utilized to assess the quality of the selected studies. A mini meta-analysis utilized JASP 0.17.3 software and included 4 applicable studies, comprising a total of 2564 participants to quantitatively assess the estimated effect size of parity on TL. RESULTS: Of the 11 studies reviewed on parity and TL, four demonstrated a negative correlation; one - a positive correlation and six -found no correlation. Studies demonstrating a negative correlation encompassed rigorous methodological practices possibly suggesting having more children is associated with enhanced telomere attrition. Of the four longitudinal studies assessing telomere dynamics throughout pregnancy, most found no change in TL from early pregnancy to postpartum suggesting pregnancy does not affect TL from early pregnancy to early postpartum. The meta-analysis revealed a negative, yet, non-significant effect, of the estimated effect size of parity on TL(ES = -0.009, p = 0.126, CI -0.021, 0.03). CONCLUSIONS: Studies assessing pregnancy, parity and TL yielded mixed results, most likely due to the different research methods utilized in each study. Improvements in study design to better understand the short-term effects of pregnancy on TL and the effect of parity on TL over time, include precise definitions of parity, comparisons of different age groups, inclusion of reproductive lifespan and statistically adjusting for potential confounders in the parity and TL relationship.


Subject(s)
Aging , Reproduction , Pregnancy , Child , Humans , Female , Telomere , Postpartum Period , Biomarkers
16.
Front Med (Lausanne) ; 10: 1232655, 2023.
Article in English | MEDLINE | ID: mdl-37601795

ABSTRACT

Within the wide scope of interstitial lung diseases (ILDs), familial pulmonary fibrosis (FPF) is being increasingly recognized as a specific entity, with earlier onset, faster progression, and suboptimal responses to immunosuppression. FPF is linked to heritable pathogenic variants in telomere-related genes (TRGs), surfactant-related genes (SRGs), telomere shortening (TS), and early cellular senescence. Telomere abnormalities have also been identified in some sporadic cases of fibrotic ILD. Air pollution and other environmental exposures carry additive risk to genetic predisposition in pulmonary fibrosis. We provide a perspective on how these features impact on screening strategies for relatives of FPF patients, interstitial lung abnormalities, ILD multi-disciplinary team (MDT) discussion, and disparities and barriers to genomic testing. We also describe our experience with establishing a familial interstitial pneumonia (FIP) clinic and provide guidance on how to identify patients with telomere dysfunction who would benefit most from genomic testing.

17.
Cureus ; 15(6): e40939, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37496551

ABSTRACT

Clinical evidence demonstrates that patients with telomere biology disorders, such as dyskeratosis congenita, are more prone to coronary artery disease. We present the case of a 43-year-old female diagnosed with dyskeratosis congenita with critical cardiovascular disease. She underwent coronary artery bypass graft (CABG) with improvement of her cardiac function. Although this is a rare genetic disease, further studies are warranted to investigate the underlying pathophysiology of cardiovascular disease in patients with dyskeratosis congenita.

18.
Can J Physiol Pharmacol ; 101(11): 565-573, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37433224

ABSTRACT

Telomere length, a marker of ageing, is susceptible to developmental programming that may cause its accelerated attrition. Metabolic syndrome triggers telomere attrition. Fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, is protective against telomere attrition. We investigated the impact of fenofibrate administered during suckling on the lipid profile and leucocyte telomere lengths of rats fed a high-fructose diet post-weaning. Suckling Sprague-Dawley pups (n = 119) were allocated to four groups and gavaged with either 10 mL·kg-1 body mass 0.5% dimethyl sulfoxide, 100 mg·kg-1 body mass fenofibrate, fructose (20%, w / v), or a combination of fenofibrate and fructose for 15 days. Upon weaning, each of the initial groups was split into two subgroups: one had plain water while the other had fructose solution (20%, w / v) to drink for 6 weeks. Blood was collected for DNA extraction and relative leucocyte telomere length determination by real-time PCR. Plasma triglycerides and cholesterol were also quantified. The treatments had no effect (p > 0.05) on body mass, cholesterol concentration, and relative leucocyte telomere lengths in both sexes. Post-weaning fructose increased triglyceride concentrations (p < 0.05) in female rats. Fenofibrate administered during suckling did not affect ageing nor did it prevent high fructose-induced hypertriglyceridaemia in female rats.


Subject(s)
Fenofibrate , Male , Rats , Animals , Female , Fenofibrate/pharmacology , Fructose/adverse effects , Rats, Sprague-Dawley , Diet , Cholesterol , Triglycerides
19.
Virus Genes ; 59(4): 489-498, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37261700

ABSTRACT

Telomere shortening, a marker of cellular aging, has been linked to hospitalization and the severity of COVID-19. In this systematic review and meta-analysis, the mean difference in telomere length between non-severe and severe COVID-19 individuals was pooled to determine the association between short telomeres and COVID-19 severity. Relevant studies were retrieved through searches conducted in PubMed-Medline, Scopus, EMBASE, Medrxiv, Biorxiv, EuroPMC, and SSRN databases up to November 2022. Selected studies were systematically reviewed and assessed for risk of bias using AXIS tool. The standardized mean difference in telomere length between non-severe and severe COVID-19 was pooled using random-effects model. A total of thirteen studies were included in the review, out of which seven (1332 patients with the severe COVID-19 disease and 6321 patients with non-severe COVID-19) were eligible for meta-analysis. The estimated pooled mean difference in Leukocyte telomere length between severe COVID-19 and non-severe COVID-19 was 0.39 (95% CI - 0.02 to 0.81, I2 = 93.5%) with substantial heterogeneity. Our findings do not provide clear evidence for association of shorter telomere length and severe COVID-19 disease. More extensive studies measuring absolute telomere length with age and gender adjustments are needed to draw definitive conclusions on the potential causal association between telomere shortening and COVID-19 severity.


Subject(s)
COVID-19 , Humans , Telomere Shortening/genetics , Telomere/genetics
20.
Antioxidants (Basel) ; 12(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37371908

ABSTRACT

Chronological aging is commonly accompanied by chronic low-grade inflammation (or "inflammaging"), a contributor to the development of age-related chronic diseases. Aging increases oxidative stress that accelerates telomere shortening, leading to cell senescence and the generation of senescence-associated secretory phenotype (SASP) that exacerbates inflammation. Dietary antioxidants may help protect telomeres and attenuate inflammation. Thyme essential oil (TEO), reported for its potency against neuroinflammation, was fed to chronologically aged C57BL/6J mice for 24 weeks. The TEO diet showed notable impacts on the hippocampus, indicated by lower expression of the aging-related gene p16INK4A (p = 0.0783) and significantly lower expression of cyclin D kinase Cdk4 and Cdk6 (p < 0.05) compared to the age-matched control mice. The TEO group also showed significantly lower gene expression of the pro-inflammatory cytokine Il6 (p < 0.05) in the hippocampus and lower Il1b expression in the liver and cerebellum (p < 0.05). In vitro experiments conducted on NIH-3T3 cells expressing SASP revealed the dose-dependent anti-inflammatory activity of TEO. Remarkably, TEO diet-fed mice showed higher survival rates and significantly longer blood telomere lengths than the control mice. Monoterpene antioxidants in TEO, particularly thymol and p-cymene, may primarily contribute to the anti-inflammatory and telomere-protecting activities of TEO.

SELECTION OF CITATIONS
SEARCH DETAIL
...