Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.369
Filter
1.
Plant Physiol Biochem ; 214: 108891, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959568

ABSTRACT

Dendrobium loddigesii, a member of the Orchidaceae family, is a valuable horticultural crop known for its aromatic qualities. However, the mechanisms responsible for the development of its aromatic characteristics remain poorly understood. To elucidate these underlying mechanisms, we assembled the first chromosome-level reference genome of D. loddigesii using PacBio HiFi-reads, Illumina short-reads, and Hi-C data. The assembly comprises 19 pseudochromosomes with N50 contig and N50 scaffold sizes of 55.15 and 89.94 Mb, respectively, estimating the genome size to be 1.68 Gb, larger than that of other sequenced Dendrobium species. During the flowering stages, we conducted a comprehensive analysis combining volatilomics and transcriptomics to understand the characteristics and biosynthetic mechanisms pathways of the floral scent. Our findings emphasize the significant contribution of aromatic terpenoids, especially monoterpenoids, in defining the floral aroma. Furthermore, we identified two crucial terpene synthase (TPS) genes that play a key role in maintaining the aroma during flowering. Through the integration volatilomics data with catalytic assays of DlTPSbs proteins, we identified specific compounds responsible for the aromatic characteristics of D. loddigesii. This integrated analysis of the genome, transcriptome, and volatilome, offers valuable insights into the development and preservation of D. loddigesii's aromatic characteristics, setting the stage for further exploration of the botanical perfumer hypothesis.

2.
J Sci Food Agric ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962946

ABSTRACT

BACKGROUND: Quinoa contains far more nutrients than any traditional grain crop. It is known that terpenoids in quinoa have anti-inflammatory and antitumor effects, but their role in reversing drug resistance remains unclear. RESULTS: Our previous studies showed that quinoa-derived terpenoid compounds (QBT) can inhibit the occurrence and development of colon cancer. This study further indicates that QBT markedly reverse drug resistance of colon cancer. The results showed that QBT combined with 5-fluorouracil (5-Fu) treatment significantly enhanced the chemotherapy sensitivity of HCT-8/Fu, compared with 5-Fu treatment alone. Moreover, we found that QBT significantly reduced the expression of drug-resistant proteins (P-gp, MRP1, BCRP), and increased the accumulation of chemotherapy drugs. Taking P-gp as the target for biogenesis prediction analysis, results showed that upregulation of miR-495-3p enhanced the chemosensitivity of drug-resistant HCT-8/Fu cells. Besides, the results showed that miR-495-3p was abnormally methylated in HCT-8/Fu compared with HCT-8 colon cancer cells. The expression of methyltransferases DNMT1, DNMT3a and DNMT3b was abnormal. After QBT treatment, the expression level of methyltransferases returned to normal. In addition, the QBT + 5Fu group showed inhibition of tumors in nude mice. CONCLUSION: QBT treatment downregulated the expression of drug-resistant protein P-gp by inhibiting the methylation of miR-495-3p, and enhanced the accumulation of 5-Fu in vivo, which in turn reversed its chemoresistance. This suggests that QBT has potential ability as a new drug-resistance reversal agent in colorectal cancer. © 2024 Society of Chemical Industry.

3.
Angew Chem Int Ed Engl ; : e202407895, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949843

ABSTRACT

The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and - according to a structural model - active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.

4.
Antioxidants (Basel) ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929090

ABSTRACT

Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.

5.
Plants (Basel) ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931115

ABSTRACT

According to modern concepts, the genus Hyssopus L. includes seven plant species (Hyssopus ambiguus (Trautv.) Iljin ex Prochorov. & Lebel; Hyssopus cuspidatus Boriss; Hyssopus latilabiatus C.Y.Wu & H.W. Li; Hyssopus macranthus Boriss.; Hyssopus officinalis L.; Hyssopus seravschanicus (Dubj.) Pazij; Hyssopus subulifolius (Rech.f.) Rech.f.). The plants are rich in various groups of biologically active substances with a wide spectrum of pharmacological action. This review presents a modern comprehensive overview of the botanical research, extraction methods, chemical composition and pharmacological activity of plants of the genus Hyssopus L. As a result of the review, it was established that the chemical composition of plant extracts of the genus Hyssopus L. depends on various factors (place of growth, weather conditions, chemotypes, extraction methods, etc.). For the further use of the plants, the extraction methods and low-molecular metabolites isolated from them (mono- and sesquiterpenoids, flavonoids, alkaloids, etc.) are discussed. The data from the review provide an assessment of the relevance.

6.
Plants (Basel) ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931119

ABSTRACT

Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, ß-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles.

7.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1661-1693, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914485

ABSTRACT

Terpenoids are the one of most abundant natural products. With diverse varieties and biological activities, they are widely used in the food, medicine, chemical industry, and novel fuels. However, the conventional methods such as plant extraction and chemical synthesis cannot meet the current market demand for terpenoids. Efficient microbial cell factories, especially engineered Saccharomyces cerevisiae strains, have been constructed for the industrial production of terpenoids. In recent years, researchers have constructed multiple S. cerevisiae strains with increased yield and productivity via approaches of synthetic biology and metabolic engineering. This paper reviews the recent progress in the biosynthesis of terpenoids in S. cerevisiae cells and summarizes a variety of metabolic engineering strategies for the production of terpenoids in S. cerevisiae. These strategies include the construction and optimization of metabolic pathways, the mining and modification of key enzymes, the regeneration of cofactors, the engineering of cell localization and cell efflux, and the improvement of cell tolerance. Our review will provide information and strategies for the effective biosynthesis of terpenoids in S. cerevisiae.


Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Terpenes , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Terpenes/metabolism , Metabolic Engineering/methods , Synthetic Biology , Metabolic Networks and Pathways
8.
World J Microbiol Biotechnol ; 40(8): 254, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916754

ABSTRACT

Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of ß-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.


Subject(s)
Antineoplastic Agents , Lycopene , Sesquiterpenes, Germacrane , Lycopene/metabolism , Sesquiterpenes, Germacrane/metabolism , Antineoplastic Agents/metabolism , Humans , Carotenoids/metabolism , Carotenoids/chemistry , Sesquiterpenes/metabolism , Biosynthetic Pathways
9.
Mar Drugs ; 22(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921556

ABSTRACT

Tuberculosis, a persistent illness caused by Mycobacterium tuberculosis, remains a significant global public health challenge. The widespread use of anti-tuberculosis drugs has resulted in the emergence of drug-resistant strains, which complicates treatment efforts. Addressing this issue is crucial and hinges on the development of new drugs that can effectively target the disease. This involves identifying novel therapeutic targets that can disrupt the bacterium's survival mechanisms in various environments such as granulomas and lesions. Citrate lyase, essential for the survival of Mycobacterium species at lesion sites and in granulomatous conditions, is a potential target for the treatment of tuberculosis. This manuscript aimed to construct an efficient enzyme inhibitor screening platform using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF MS). This system can accurately identify compounds with enzyme inhibitory activity from a library of marine terpenoids and phenolic compounds. Utilizing the screened herbal enzyme inhibitors as a starting point, we analyzed their chemical structures and skillfully built a library of marine compounds based on these structures. The results showed that all of the tested compounds from the phenolics library inhibited citrate lyase by more than 50%, and a significant portion of terpenoids also demonstrated inhibition, with these active terpenoids comprising over half of the terpenoids tested. The study underscores the potential of marine-derived phenolic and terpenoid compounds as potent inhibitors of citrate lyase, indicating a promising direction for future investigations in treating tuberculosis and associated disorders.


Subject(s)
Antitubercular Agents , Enzyme Inhibitors , Mycobacterium tuberculosis , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Chromatography, High Pressure Liquid/methods , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Aquatic Organisms , Terpenes/pharmacology , Terpenes/chemistry , Humans , Phenols/pharmacology , Phenols/chemistry , Chromatography, Liquid/methods
10.
Front Nutr ; 11: 1352548, 2024.
Article in English | MEDLINE | ID: mdl-38835963

ABSTRACT

Introduction: Cubeb, Piper cubeba L., has been used for centuries in traditional medicine and culinary practices, with a wide range of biological and pharmacological activities. Objective: Herein, we determined the phytochemical profile, mineral, fatty acids, and amino acid contents of P. cubeba berries and assessed the dermacosmeceutical properties of their water extract and essential oil (EO). These included assessing their antioxidant and antibacterial activities as well as their in vitro inhibitory activities against tyrosinase and elastase enzymes. In addition, molecular docking and molecular dynamics studies were performed on the major identified compounds of the EO. Results and discussion: A total of forty-three compounds belonging to organic acids, phenolic acids and flavonoids were found in the water extract, while 36 volatile compounds were identified in the EO with Z-isoeugenol, dihydroeugenol, ß-pinene, E-caryophyllene, and 1,8-cineole as major constituents. The berries were found to be rich in sodium and iron, have moderate zinc content along with low contents of total nitrogen, phosphorus, and potassium. Amino acid analysis revealed a considerable concentration of isoleucine and phenylalanine, whereas 11,14,17-eicosatrienoic acid and linoleic acid were identified as the major fatty acids. In the DPPH and FRAP assays, the water extract elicited considerable antioxidant activity compared to the reference compounds. Enzyme inhibitory assays revealed that the EO had a potential to inhibit tyrosinase and elastase enzymes with IC50 values of 340.56 and 86.04 µg/mL, respectively. The water extract and EO completely inhibited the bacterial growth at MIC of 50 mg/mL and 20%, respectively. At sub-MIC concentrations, the extract and the EO substantially reduced the biofilm formation by up to 26.63 and 77.77%, respectively, as well as the swimming and swarming motilities in a dose-dependent manner. Molecular docking and molecular dynamics showed that the five main components of P. cubeba EO could be the major contributors to the elastase and tyrosinase inhibitory effect. Conclusion: This study emphasizes the promising potential of P. cubeba as a valuable source of natural compounds that can be utilized for the development of innovative pharmaceuticals, dietary supplements, and dermacosmeceutical agents.

11.
Cureus ; 16(5): e59671, 2024 May.
Article in English | MEDLINE | ID: mdl-38836134

ABSTRACT

Introduction Tinea capitis, often known as ringworm of the scalp, is a fungal infection that affects the scalp, eyelashes, and eyebrows. It is generally caused by dermatophytes from the genera Trichophyton and Microsporum. Trichophyton tonsurans and Microsporum canis are the main etiological agents responsible for most of the cases of tinea capitis globally. Tinea capitis commonly manifests as itchy, scaly patches of hair loss. Tinea capitis is the prevailing dermatophyte illness among children globally. Methods An in-vitroevaluation study was conducted to assess the antifungal properties of ethanolic extracts of neem leaves and the oils of Eucalyptus citriodora and Cymbopogon martini, both individually and in combination. The agar-well diffusion method and the M38-A2 microbroth dilution method were employed to evaluate the antifungal efficacy against pathogenic dermatophyte strains, namely Microsporum canis and Trichophyton tonsurans. The fully mature green leaves were treated with ethanol to make the neem leaf extract. Additionally, high-performance liquid chromatographic analysis was carried out to determine the contents of the terpenoids. Fluconazole, an antifungal drug, is used as a standard. Results The findings demonstrated an overall inhibition of the growth of dermatophytes at a minimal inhibitory concentration of 187.5 and 375 µg/ml for neem leaf extract and 0.625 to 2.5 µl/ml for selected herbal oils, whereas it was 0.25 µg/ml and 0.50 µg/ml for positive control against Microsporum canis and Trichophyton tonsurans, respectively. Conclusion The phytochemical investigation of the ethanolic extracts in neem leaves revealed the presence of terpenoids, which are known for their significant biological activity. The study's findings demonstrated the therapeutic capabilities of neem leaf extract in combination with the oils of Eucalyptus citriodora and Cymbopogon martini for managing the tinea capitis infection. A broader and improved antifungal spectrum was seen when neem leaf extract and oils were combined. Therefore, it can be developed into a suitable formulation for the management of tinea capitis.

12.
Methods Enzymol ; 699: 207-230, 2024.
Article in English | MEDLINE | ID: mdl-38942504

ABSTRACT

Chemoenzymatic synthesis of non-natural terpenes using the promiscuous activity of terpene synthases allows for the expansion of the chemical space of terpenoids with potentially new bioactivities. In this report, we describe protocols for the preparation of a novel aphid attractant, (S)-14,15-dimethylgermacrene D, by exploiting the promiscuity of (S)-germacrene D synthase from Solidago canadensis and using an engineered biocatalytic route to convert prenols to terpenoids. The method uses a combination of five enzymes to carry out the preparation of terpenoid semiochemicals in two steps: (1) diphosphorylation of five or six carbon precursors (prenol, isoprenol and methyl-isoprenol) catalyzed by Plasmodium falciparum choline kinase and Methanocaldococcus jannaschii isopentenyl phosphate kinase to form DMADP, IDP and methyl-IDP, and (2) chain elongation and cyclization catalyzed by Geobacillus stearothermophilus (2E,6E)-farnesyl diphosphate synthase and S. canadensis (S)-germacrene D synthase to produce (S)-germacrene D and (S)-14,15-dimethylgermacrene D. Using this method, new non-natural terpenoids are readily accessible and the approach can be adopted to produce different terpene analogs and terpenoid derivatives with potential novel applications.


Subject(s)
Alkyl and Aryl Transferases , Terpenes , Terpenes/metabolism , Terpenes/chemistry , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Plasmodium falciparum/enzymology , Animals , Biocatalysis , Substrate Specificity , Aphids/enzymology
13.
Methods Enzymol ; 699: 59-87, 2024.
Article in English | MEDLINE | ID: mdl-38942516

ABSTRACT

Structural biology research of terpene synthases (TSs) has provided a useful basis to understand their catalytic mechanisms in producing diverse terpene products with polycyclic ring systems and multiple chiral centers. However, compared to the large numbers of>95,000 terpenoids discovered to date, few structures of TSs have been solved and the understanding of their catalytic mechanisms is lagging. We here (i) introduce the basic catalytic logic, the structural architectures, and the metal-binding conserved motifs of TSs; (ii) provide detailed experimental procedures, in gene cloning and plasmid construction, protein purification, crystallization, X-ray diffraction data collection and structural elucidation, for structural biology research of TSs; and (iii) discuss the prospects of structure-based engineering and de novo design of TSs in generating valuable terpene molecules, which cannot be easily achieved by chemical synthesis.


Subject(s)
Alkyl and Aryl Transferases , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Crystallography, X-Ray/methods , Terpenes/metabolism , Terpenes/chemistry , Cloning, Molecular/methods , Models, Molecular , Protein Conformation
14.
Angew Chem Int Ed Engl ; : e202406246, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934471

ABSTRACT

Terpene synthases (TPSs) play pivotal roles in generating diverse terpenoids through complex cyclization pathways. Protein engineering of TPSs offers a crucial approach to expanding terpene diversity. However, significant potential remains untapped due to limited understanding of the structure-function relationships of TPSs. In this investigation, using a joint approach of molecular dynamics simulations-assisted engineering and site-directed mutagenesis, we manipulated the aromatic residue cluster (ARC) of a bifunctional terpene synthase (BFTPS), Pestalotiopsisfici nigtetraene synthase (PfNS). This led to the discovery of previously unreported catalytic functions yielding different cyclization patterns of sesterterpenes. Specifically, a quadruple variant (F89A/Y113F/W193L/T194W) completely altered PfNS's function, converting it from producing the bicyclic sesterterpene nigtetraene to the tricyclic ophiobolin F. Additionally, analysis of catalytic profiles by double, triple, and quadruple variants demonstrated that the ARC functions as a switch, unprecedently redirecting the production of 5/11 bicyclic (Type B) sesterterpenes to 5/15 bicyclic (Type A) ones. Molecular dynamics simulations and theozyme calculations further elucidated that, in addition to cation-π interactions, C-H∙∙∙π interactions also play a key role in the cyclization patterns. This study offers a feasible strategy in protein engineering of TPSs for various industrial applications.

15.
Chem Biodivers ; : e202400788, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934531

ABSTRACT

This review focus on the terpenoids as potential therapeutic agents for depression and anxiety disorders, which naturally found in a variety of plants and exhibit a wide range of biological activities. Among the terpenoids discussed in this review are α-pinene, ß-caryophyllene, α-phellandrene, limonene, ß-linalool, 1, 8-cineole, ß-pinene, caryophyllene oxide, p-cymene, and eugenol. All of these compounds have been studied extensively regarding their pharmacological properties, such as neuroprotective effect, anti-inflammation, antibacterial, regulation of neurotransmitters and antioxidant effect. Preclinical evidence are reviewed to highlight their diverse mechanisms of action and therapeutic potential to support antidepressant and anxiolytic properties. Additionally, challenges and future directions are also discussed to emphasize therapeutic utility of terpenoids for mental health disorders. Overall, this review provides a promising role of terpenoids as novel therapeutic agents for depression and anxiety, with potential implications for the development of more effective and well-tolerated treatments in the field of psychopharmacology.

16.
Angew Chem Int Ed Engl ; : e202408809, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924286

ABSTRACT

The biosynthesis of six recently reported non-canonical C16 sesquiterpenoids named after ancient Greek philosophers including archimedene, aristotelene, eratosthenene, pythagorene, a-democritene and anaximandrene was investigated through density functional theory (DFT) calculations and isotopic labeling experiments. The results revealed for all compounds except archimedene a unique fragmentation-recombination mechanism as previously demonstrated for sodorifen biosynthesis, in addition to a remarkable "dancing" mechanism for anaximandrene biosynthesis.

17.
Planta ; 260(1): 26, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861179

ABSTRACT

MAIN CONCLUSION: CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed ß-myrcene and ß-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated ß-myrcene and ß-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.


Subject(s)
Acyclic Monoterpenes , Alkyl and Aryl Transferases , Curcuma , Flowers , Sesquiterpenes , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Flowers/genetics , Flowers/enzymology , Flowers/metabolism , Sesquiterpenes/metabolism , Acyclic Monoterpenes/metabolism , Curcuma/genetics , Curcuma/enzymology , Curcuma/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Terpenes/metabolism , Volatile Organic Compounds/metabolism , Phylogeny , Odorants
18.
Food Chem ; 456: 140034, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38870823

ABSTRACT

Citrus reticulata L leaves are one of the main post-harvest byproduct, containing bioactive compounds, that are usually undervalued. This work describes the development of a biorefinery process based on the application of supercritical CO2 (SC-CO2) followed by ultrasonic-assisted extraction (UAE) combined with Natural Deep Eutectic Solvents (NaDES) to extract bioactive terpenoids and phenolic compounds from these leaves. Extraction temperature and pressure of SC-CO2 were optimized, obtaining the highest bioactive terpenoids content using 200 bar at 60 °C. A Box-Behnken experimental design showed that 57% of water in NaDES composed of Choline Chloride and Glycerol (1:2) as extraction solvent at 25 °C for 50 min were the optimal UAE-NaDES extraction conditions to obtain the highest bioactive phenolic content from the residue of the optimal SC-CO2 extraction. The optimum extract presented the highest bioactivity and polyphenol content determined by LC-DAD-MS compared with extracts obtained using only water or NaDES as solvent.

19.
Chemistry ; : e202400512, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742865

ABSTRACT

Unsaturated cyclic terpenes often exhibit instability due to the proximation of C=C bonds in the cyclic skeleton, leading to nonenzymatic degradation. In this study, the crystalline sponge (CS) method was employed for the X-ray conformational analysis of a minute amount of oily and cyclic terpene compound, (+)-germacrene D-4-ol, which was produced by a terpene synthase OILTS under in vitro conditions.  The CS method revealed a reactive conformation of the cyclic terpene with proximal double bonds. Under weakly acidic in vivo conditions, OILTS gave four pseudo-natural products or artifacts. The CS method also elucidated the structures of these degraded compounds, proposing a degradation mechanism triggered by the transannular reactions.

20.
Arch Toxicol ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795134

ABSTRACT

The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...