Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 14(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35956679

ABSTRACT

Thermoplastic polyurethanes (TPUs) are versatile polymers presenting a broad range of properties as a result of their countless combination of raw materials­in essence, isocyanates, polyols, and chain extenders. This study highlights the effect of two different chain extenders and their combination on the structure−property relationships of TPUs synthesized by reactive extrusion. The TPUs were obtained from 4,4-diphenylmethane diisocyanate (MDI), polyester diols, and the chain extenders 1,4-butanediol (BDO) and dipropylene glycol (DPG). The BDO/DPG ratios studied were 100/0, 75/25, 50/50, 25/75, and 0/100 wt.%. The TPUs were characterized by size exclusion chromatography (SEC), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), UV−vis spectroscopy, and physical-mechanical properties. The results indicate that DPG promotes compatibility between rigid (HS) and flexible (SS) segments of TPUs. Consequently, increasing DPG content (>75 wt.%) reduced the organization of the rigid segments and the degree of phase separation, increasing the polydispersity of the interdomain distance and the transparency in the UV−visible spectrum of the TPUs. Furthermore, increasing DPG content also reduced the amount of hydrogen bonds present in the rigid phase, reducing or extinguishing its glass transition temperature (TgHS) and melting temperature (Tm), and increasing the glass transition temperature of the flexible phase (TgSS). Therefore, increasing DPG content leads to a deterioration in mechanical properties and hydrolysis resistance.

2.
Materials (Basel) ; 15(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36013668

ABSTRACT

In the agricultural sector, companies involved in the production of plastic greenhouses are currently searching for a suitable covering adapted for every climate in the world. For this purpose, this research work has determined the chemical, radiometric and mechanical properties of 53 polymeric films samples from Europe and South America. The chemical tests carried out with these samples were elemental analysis (C, H and N) and FT-IR spectrometry. The radiometric properties here studied were the transmission, absorption and reflection coefficients along the spectrum between 300 and 1100 nm. For the mechanical properties, tensile strength, tear strength and dart impact strength, tests were carried out. Finally, all these data were collected, and a multivariate statistical analysis was carried out using the SPSS statistical to group the samples into statistical groups adapted to specific climatic regions. The elemental analysis and FT-IR spectrometry allowed group the samples into nine groups. The samples were grouped according to their chemical (elemental analysis), radiometric and mechanical properties by multivariate analysis. The dendrogram separated five very different groups in terms of number of samples. These groups have specific chemical, radiometric and mechanical characteristics that separate them from the rest. These groups make it possible to narrow down the applications and correlate with the radiometric properties to see in which geographical area of the world they are most effective in increasing yields and achieving higher quality production.

3.
Polymers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960930

ABSTRACT

Currently, the pyrolysis process is an important technology for the final treatment of plastic waste worldwide. For this reason, knowing in detail the chemical process and the thermodynamics that accompany cracking reactions is of utmost importance. The present study aims to determine the thermodynamic parameters of the degradation process of conventional thermoplastics (polystyrene (PS), polyethylene terephthalate (PET), high-density polyethylene (HDPE), polypropylene (PP) and polyvinyl chloride (PVC)) from the study of their chemical kinetics by thermogravimetric analysis (TG). Non-isothermal thermogravimetry was performed at three heating rates from room temperature to 550 °C with an inert nitrogen atmosphere with a flow of 20 mL min-1. Once the TG data is obtained, an analysis is carried out with the isoconversional models of Friedman (FR), Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO) in order to determine the one that best fits the experimental data, and with this, the calculation of the activation energy and the pre-exponential factor is performed. The validation of the model was carried out using the correlation factor, determining that the KAS model is the one that best adjusts for the post-consumer thermoplastic degradation process at the three heating rates. With the use of the kinetic parameters, the variation of the Gibbs free energy is determined in each of the cases, where it is necessary that for structures containing aromatic groups a lower energy is presented, which implies a relative ease of degradation compared to the linear structures.

4.
Data Brief ; 29: 105295, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32154341

ABSTRACT

In additive manufacturing (AM), thermoplastic components made by fused deposition modeling (FDM) offer low strength and stiffness, as required for fully functional and load-bearing parts. Composite materials are a practical solution to improve mechanical properties [1,2]. A new technology to reinforce thermoplastics with continuous fibers has been developed recently by Markforged [3]. It introduces continuous fiber to reinforce a thermoplastic matrix, thus, taking static mechanical performance close to Aluminum alloys [4]. These printers for continuous fiber reinforced thermoplastic composites (CFRTPC) have taken this technology to a whole new level in terms of mechanical properties and efficient production. Mechanical properties under monotonic load were studied for different kinds of printing configurations. Tensile monotonic tests under controlled displacement were performed until rupture. Raw data showing tensile monotonic behavior provides the researchers with the ability to perform data fitting, to validate more advanced constitutive models, or to perform a further interpretation of the data, among others. Data is presented here as plain text files without any analysis. A preliminary data analysis has been published already in [5]. The text files contain information about time, displacement, and force. The data is useful for design engineers and researchers involved with AM.

SELECTION OF CITATIONS
SEARCH DETAIL