Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
Viruses ; 13(6)2021 06 10.
Article in English | MEDLINE | ID: mdl-34200586

ABSTRACT

Three prophylactic vaccines are approved to protect against HPV infections. These vaccines are highly immunogenic. The most recent HPV vaccine, Gardasil-9, protects against HPV types associated with ~90% of cervical cancer (worldwide). Thus, ~10% of HPV-associated cancers are not protected by Gardasil-9. Although this is not a large percentage overall, the HPV types associated with 10% of cervical cancer not protected by the current vaccine are significantly important, especially in HIV/AIDS patients who are infected with multiple HPV types. To broaden the spectrum of protection against HPV infections, we developed mixed MS2-L2 VLPs (MS2-31L2/16L2 VLPs and MS2-consL2 (69-86) VLPs) in a previous study. Immunization with the VLPs neutralized/protected mice against infection with eleven high-risk HPV types associated with ~95% of cervical cancer and against one low-risk HPV type associated with ~36% of genital warts & up to 32% of recurrent respiratory papillomatosis. Here, we report that the mixed MS2-L2 VLPs can protect mice from three additional HPV types: HPV51, which is associated with ~0.8% of cervical cancer; HPV6, which is associated with up to 60% of genital warts; HPV5, which is associated with skin cancers in patients with epidermodysplasia verruciformis (EV). Overall, mixed MS2-L2 VLPs can protect against twelve HPV types associated with ~95.8% of cervical cancers and against two HPV types associated with ~90% of genital warts and >90% recurrent respiratory papillomatosis. Additionally, the VLPs protect against one of two HPV types associated with ~90% of HPV-associated skin cancers in patients with EV. More importantly, we observed that mixed MS2-L2 VLPs elicit protective antibodies that last over 9 months. Furthermore, a spray-freeze-dried formulation of the VLPs is stable, immunogenic, and protective at room temperature and 37 °C.


Subject(s)
Antibodies, Viral/blood , Bacteriophages/immunology , Papillomaviridae/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/administration & dosage , Vaccines, Virus-Like Particle/immunology , Animals , Condylomata Acuminata/prevention & control , Cross Protection/immunology , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Papillomaviridae/classification , Papillomaviridae/pathogenicity , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/prevention & control , Vaccines, Virus-Like Particle/administration & dosage
3.
Vaccine ; 35(23): 3135-3142, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28455169

ABSTRACT

BACKGROUND: While our previous work has shown that replacing existing vaccines with thermostable vaccines can relieve bottlenecks in vaccine supply chains and thus increase vaccine availability, the question remains whether this benefit would outweigh the additional cost of thermostable formulations. METHODS: Using HERMES simulation models of the vaccine supply chains for the Republic of Benin, the state of Bihar (India), and Niger, we simulated replacing different existing vaccines with thermostable formulations and determined the resulting clinical and economic impact. Costs measured included the costs of vaccines, logistics, and disease outcomes averted. RESULTS: Replacing a particular vaccine with a thermostable version yielded cost savings in many cases even when charging a price premium (two or three times the current vaccine price). For example, replacing the current pentavalent vaccine with a thermostable version without increasing the vaccine price saved from $366 to $10,945 per 100 members of the vaccine's target population. Doubling the vaccine price still resulted in cost savings that ranged from $300 to $10,706, and tripling the vaccine price resulted in cost savings from $234 to $10,468. As another example, a thermostable rotavirus vaccine (RV) at its current (year) price saved between $131 and $1065. Doubling and tripling the thermostable rotavirus price resulted in cost savings ranging from $102 to $936 and $73 to $808, respectively. Switching to thermostable formulations was highly cost-effective or cost-effective in most scenarios explored. CONCLUSION: Medical cost and productivity savings could outweigh even significant price premiums charged for thermostable formulations of vaccines, providing support for their use.


Subject(s)
Rotavirus Vaccines/economics , Rotavirus Vaccines/supply & distribution , Vaccine Potency , Benin/epidemiology , Computer Simulation , Cost-Benefit Analysis , Humans , India/epidemiology , Infant , Niger/epidemiology , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL