Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
J Vet Intern Med ; 38(3): 1512-1519, 2024.
Article in English | MEDLINE | ID: mdl-38619127

ABSTRACT

BACKGROUND: The immature platelet fraction (IPF), a parameter obtained by the Sysmex XN-1000V analyzer, is used in humans to differentiate between central (CEN) and peripheral (PER) thrombocytopenia (TP) but has not been evaluated in small animals. OBJECTIVES: Compare IPF between healthy, clinical non-TP and TP dogs and cats, study IPF in different causes of TP in dogs and cats and, establish IPF reference intervals (RIs), and study the effect of age and sex on IPF in healthy dogs and cats. ANIMALS: A total of 3281 dogs and 726 cats. METHODS: Retrospective review of medical records. Animals were classified as nonthrombocytopenic (healthy group and group of clinical patients without TP [NTP]) or TP. These latter animals were subclassified as pseudothrombocytopenia (PSE), CEN and PER, based on evaluation of platelet clumps, estimated platelet count in blood smears and final diagnosis. Blood samples were evaluated using a Sysmex XN-1000V with a specific platelet channel (PLT-F). RESULTS: The IPF was significantly different between each subtype of TP in both species. Immature platelet fractions <6.9% in dogs or 13.6% in cats, once PSE has been eliminated by review of blood smears, are indicative of CEN. Reference intervals for IPF were 0.5%-8% in healthy dogs and 1%-40.3% in healthy cats. CONCLUSIONS AND CLINICAL IMPORTANCE: We determined that IPF can differentiate between CEN and PER in dogs and cats, guiding additional testing and avoiding more invasive procedures (bone marrow sampling). A blood smear always should be evaluated to rule out platelet clumping.


Subject(s)
Cat Diseases , Dog Diseases , Thrombocytopenia , Animals , Dogs , Cats , Dog Diseases/diagnosis , Dog Diseases/blood , Thrombocytopenia/veterinary , Thrombocytopenia/diagnosis , Thrombocytopenia/blood , Cat Diseases/diagnosis , Cat Diseases/blood , Retrospective Studies , Female , Male , Diagnosis, Differential , Platelet Count/veterinary , Platelet Count/instrumentation , Blood Platelets , Reference Values
2.
Cells ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667319

ABSTRACT

Platelets are the terminal progeny of megakaryocytes, primarily produced in the bone marrow, and play critical roles in blood homeostasis, clotting, and wound healing. Traditionally, megakaryocytes and platelets are thought to arise from multipotent hematopoietic stem cells (HSCs) via multiple discrete progenitor populations with successive, lineage-restricting differentiation steps. However, this view has recently been challenged by studies suggesting that (1) some HSC clones are biased and/or restricted to the platelet lineage, (2) not all platelet generation follows the "canonical" megakaryocytic differentiation path of hematopoiesis, and (3) platelet output is the default program of steady-state hematopoiesis. Here, we specifically investigate the evidence that in vivo lineage tracing studies provide for the route(s) of platelet generation and investigate the involvement of various intermediate progenitor cell populations. We further identify the challenges that need to be overcome that are required to determine the presence, role, and kinetics of these possible alternate pathways.


Subject(s)
Blood Platelets , Hematopoietic Stem Cells , Animals , Mice , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Differentiation , Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Megakaryocytes/cytology , Megakaryocytes/metabolism , Humans
3.
Res Pract Thromb Haemost ; 8(1): 102345, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38525349

ABSTRACT

A State of the Art lecture titled "Immune Attack on Megakaryocytes in ITP: The Role of Megakaryocyte Impairment" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Immune thrombocytopenia (ITP) is an acquired autoimmune disorder caused by autoantibodies against platelet surface glycoproteins that provoke increased clearance of circulating platelets, leading to reduced platelet number. However, there is also evidence of a direct effect of antiplatelet autoantibodies on bone marrow megakaryocytes. Indeed, immunologic cells responsible for autoantibody production reside in the bone marrow; megakaryocytes progressively express during their maturation the same glycoproteins against which ITP autoantibodies are directed, and platelet autoantibodies have been detected in the bone marrow of patients with ITP. In vitro studies using ITP sera or monoclonal antibodies against platelet and megakaryocyte surface glycoproteins have shown an impairment of many steps of megakaryopoiesis and thrombopoiesis, such as megakaryocyte differentiation and maturation, migration from the osteoblastic to the vascular niche, adhesion to extracellular matrix proteins, and proplatelet formation, resulting in impaired and ectopic platelet production in the bone marrow and diminished platelet release in the bloodstream. Moreover, cytotoxic T cells may target bone marrow megakaryocytes, resulting in megakaryocyte destruction. Altogether, these findings suggest that antiplatelet autoantibodies and cellular immunity against bone marrow megakaryocytes may significantly contribute to thrombocytopenia in some patients with ITP. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress. The complete unraveling of the mechanisms of immune attack-induced impairment of megakaryopoiesis and thrombopoiesis may open the way to new therapeutic approaches.

4.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256942

ABSTRACT

Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.

5.
Blood Cells Mol Dis ; 104: 102796, 2024 01.
Article in English | MEDLINE | ID: mdl-37717409

ABSTRACT

Thrombopoiesis is the production of platelets from megakaryocytes in the bone marrow of mammals. In fish, thrombopoiesis involves the formation of thrombocytes without megakaryocyte-like precursors but derived from erythrocyte thrombocyte bi-functional precursor cells. One unique feature of thrombocyte differentiation involves the maturation of young thrombocytes in circulation. In this study, we investigated the role of hox genes in zebrafish thrombopoiesis to model platelet production. We selected hoxa10b, hoxb2a, hoxc5a, hoxd3a, and hoxc11b from thrombocyte RNA expression data, and checked whether they are expressed in young or mature thrombocytes. We found hoxa10b, hoxb2a, hoxc5a, and hoxd3a were expressed in both young and mature thrombocytes and hoxc11b was expressed in only young thrombocytes. We then performed knockdowns of these 5 hox genes and found hoxc11b knockdown resulted in thrombocytosis and the rest showed thrombocytopenia. To identify hox genes that could have been missed by the above datasets, we performed knockdowns 47 hox genes in the zebrafish genome and found hoxa9a, and hoxb1a knockdowns resulted in thrombocytopenia and they were expressed in both young and mature thrombocytes. In conclusion, our comprehensive knockdown study identified Hoxa10b, Hoxb2a, Hoxc5a, Hoxd3a, Hoxa9a, and Hoxb1a, as positive regulators and Hoxc11b, as a negative regulator for thrombocyte development.


Subject(s)
Thrombocytopenia , Thrombopoiesis , Animals , Thrombopoiesis/genetics , Zebrafish/genetics , Zebrafish/metabolism , Genes, Homeobox , Blood Platelets/metabolism , Megakaryocytes , Thrombocytopenia/genetics , Mammals/genetics
6.
Cells ; 12(19)2023 10 06.
Article in English | MEDLINE | ID: mdl-37830625

ABSTRACT

Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (Pf4CreRosa26mTmG). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.


Subject(s)
Microscopy , Thrombopoiesis , Mice , Animals , Blood Platelets , Megakaryocytes , Platelet Count
7.
J Transl Med ; 21(1): 540, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573325

ABSTRACT

BACKGROUND: Cyclooxygenase (COX)-2 is a rate-limiting enzyme in the biosynthesis of prostanoids, which is mostly inducible by inflammatory cytokines. The participation of COX-2 in the maturation of megakaryocytes has been reported but barely studied in primary immune thrombocytopenia (ITP). METHODS: The expressions of COX-2 and Caspase-1, Caspase-3 and Caspase-3 p17 subunit in platelets from ITP patients and healthy controls (HC), and the expressions of COX-2 and CD41 in bone marrow (BM) of ITP patients were measured and analyzed for correlations. The effects of COX-2 inhibitor on megakaryopoiesis and thrombopoiesis were assessed by in vitro culture of Meg01 cells and murine BM-derived megakaryocytes and in vivo experiments of passive ITP mice. RESULTS: The expression of COX-2 was decreased and Caspase-1 and Caspase-3 p17 were increased in platelets from ITP patients compared to HC. In platelets from ITP patients, the COX-2 expression was positively correlated with platelet count and negatively correlated to the expression of Caspase-1. In ITP patients BM, the expression of CD41 was positively correlated with the expression of COX-2. COX-2 inhibitor inhibited the count of megakaryocytes and impaired the maturation and platelet production in Meg01 cells and bone marrow-derived megakaryocytes. COX-2 inhibitor aggravated thrombocytopenia and damaged megakaryopoiesis in ITP murine model. CONCLUSION: COX-2 plays a vital role in the physiologic and pathologic conditions of ITP by intervening the survival of platelets and impairing the megakaryopoiesis and thrombopoiesis of megakaryocytes.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Thrombopoiesis , Animals , Mice , Blood Platelets/metabolism , Caspase 3/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors , Megakaryocytes/metabolism , Thrombopoiesis/physiology
8.
J Hematol Oncol ; 16(1): 84, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37501059

ABSTRACT

Hyperhomocysteinemia (HHcy) is closely associated with thrombotic diseases such as myocardial infarction and stroke. Enhanced platelet activation was observed in animals and humans with HHcy. However, the influence of HHcy on thrombopoiesis remains largely unknown. Here, we reported increased platelet count (PLT) in mice and zebrafish with HHcy. In hypertensive patients (n = 11,189), higher serum level of total Hcy was observed in participants with PLT ≥ 291 × 109/L (full adjusted ß, 0.59; 95% CI 0.14, 1.04). We used single-cell RNA sequencing (scRNA-seq) to characterize the impact of Hcy on transcriptome, cellular heterogeneity, and developmental trajectories of megakaryopoiesis from human umbilical cord blood (hUCB) CD34+ cells. Together with in vitro and in vivo analysis, we demonstrated that Hcy promoted megakaryocytes (MKs) differentiation via growth hormone (GH)-PI3K-Akt axis. Moreover, the effect of Hcy on thrombopoiesis is independent of thrombopoietin (TPO) because administration of Hcy also led to a significant increase of PLT in homozygous TPO receptor (Mpl) mutant mice and zebrafish. Administration of melatonin effectively reversed Hcy-induced thrombopoiesis in mice. ScRNA-seq showed that melatonin abolished Hcy-facilitated MK differentiation and maturation, inhibited the activation of GH-PI3K-Akt signaling. Our work reveals a previously unrecognized role of HHcy in thrombopoiesis and provides new insight into the mechanisms by which HHcy confers an increased thrombotic risk.Trial Registration clinicaltrials.gov Identifier: NCT00794885.


Subject(s)
Hyperhomocysteinemia , Melatonin , Humans , Mice , Animals , Thrombopoiesis/genetics , Megakaryocytes , Blood Platelets , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/genetics , Zebrafish , Growth Hormone/pharmacology , Melatonin/pharmacology , Hyperhomocysteinemia/complications , Cell Differentiation
9.
Int J Biol Sci ; 19(11): 3614-3627, 2023.
Article in English | MEDLINE | ID: mdl-37496998

ABSTRACT

Abnormal megakaryocyte maturation and platelet production lead to platelet-related diseases and impact the dynamic balance between hemostasis and bleeding. Cellular repressor of E1A-stimulated gene 1 (CREG1) is a glycoprotein that promotes tissue differentiation. However, its role in megakaryocytes remains unclear. In this study, we found that CREG1 protein is expressed in platelets and megakaryocytes and was decreased in the platelets of patients with thrombocytopenia. A cytosine arabinoside-induced thrombocytopenia mouse model was established, and the mRNA and protein expression levels of CREG1 were found to be reduced in megakaryocytes. We established megakaryocyte/platelet conditional knockout (Creg1pf4-cre) and transgenic mice (tg-Creg1). Compared to Creg1fl/fl mice, Creg1pf4-cre mice exhibited thrombocytopenia, which was mainly caused by inefficient bone marrow (BM) thrombocytopoiesis, but not by apoptosis of circulating platelets. Cultured Creg1pf4-cre-megakaryocytes exhibited impairment of the actin cytoskeleton, with less filamentous actin, significantly fewer proplatelets, and lower ploidy. CREG1 directly interacts with MEK1/2 and promotes MEK1/2 phosphorylation. Thus, our study uncovered the role of CREG1 in the regulation of megakaryocyte maturation and thrombopoiesis, and it provides a possible theoretical basis for the prevention and treatment of thrombocytopenia.


Subject(s)
Thrombocytopenia , Thrombopoiesis , Animals , Mice , Blood Platelets/metabolism , Bone Marrow , Megakaryocytes/metabolism , Mice, Transgenic , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombopoiesis/genetics , Humans
10.
J Thromb Haemost ; 21(11): 3207-3223, 2023 11.
Article in English | MEDLINE | ID: mdl-37336437

ABSTRACT

BACKGROUND: Glucocorticoids are widely known for their immunomodulatory action. Their synthetic analogs are used to treat several autoimmune diseases, including immune thrombocytopenia. However, their efficacy and mechanisms of action in immune thrombocytopenia are not fully understood. OBJECTIVES: To investigate the mechanism of glucocorticoid actions on platelet production. METHODS: The actions of glucocorticoids on platelet production were studied combining in vivo, ex vivo and in vitro approaches. RESULTS: Dexamethasone reduced bleeding in mice and rapidly increased circulating young platelet counts. In vitro glucocorticoid treatment stimulated proplatelet formation by megakaryocytes and platelet-like particle release. This effect was blocked by glucocorticoid receptor antagonist RU486, indicating a glucocorticoid receptor-dependent mechanism. Genome-wide analysis revealed that dexamethasone regulates the expression of >1000 genes related to numerous cellular functions, including predominant cytoplasm and cytoskeleton reorganization. Dexamethasone and other glucocorticoids induced the expression of Gda (the gene encoding guanine deaminase), which has been reported to have a role in dendrite development. Inhibition of guanine deaminase enzymatic activity blocked dexamethasone stimulation of proplatelet formation, implicating a critical role for this enzyme in glucocorticoid-mediated platelet production. CONCLUSION: Our findings identify glucocorticoids as new regulators of thrombopoiesis.


Subject(s)
Guanine Deaminase , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Mice , Animals , Megakaryocytes/metabolism , Thrombopoiesis/physiology , Glucocorticoids/pharmacology , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Guanine Deaminase/metabolism , Transcriptome , Blood Platelets/metabolism , Thrombocytopenia/metabolism , Dexamethasone/pharmacology
11.
Ther Adv Hematol ; 14: 20406207231152746, 2023.
Article in English | MEDLINE | ID: mdl-36865986

ABSTRACT

Platelets, derived from a certain subpopulation of megakaryocytes, are closely related to hemostasis, coagulation, metastasis, inflammation, and cancer progression. Thrombopoiesis is a dynamic process regulated by various signaling pathways in which thrombopoietin (THPO)-MPL is dominant. Thrombopoiesis-stimulating agents could promote platelet production, showing therapeutic effects in different kinds of thrombocytopenia. Some thrombopoiesis-stimulating agents are currently used in clinical practices to treat thrombocytopenia. The others are not in clinical investigations to deal with thrombocytopenia but have potential in thrombopoiesis. Their potential values in thrombocytopenia treatment should be highly regarded. Novel drug screening models and drug repurposing research have found many new agents and yielded promising outcomes in preclinical or clinical studies. This review will briefly introduce thrombopoiesis-stimulating agents currently or potentially valuable in thrombocytopenia treatment and summarize the possible mechanisms and therapeutic effects, which may enrich the pharmacological armamentarium for the medical treatment of thrombocytopenia.

12.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982178

ABSTRACT

Protein glycosylation, including sialylation, involves complex and frequent post-translational modifications, which play a critical role in different biological processes. The conjugation of carbohydrate residues to specific molecules and receptors is critical for normal hematopoiesis, as it favors the proliferation and clearance of hematopoietic precursors. Through this mechanism, the circulating platelet count is controlled by the appropriate platelet production by megakaryocytes, and the kinetics of platelet clearance. Platelets have a half-life in blood ranging from 8 to 11 days, after which they lose the final sialic acid and are recognized by receptors in the liver and eliminated from the bloodstream. This favors the transduction of thrombopoietin, which induces megakaryopoiesis to produce new platelets. More than two hundred enzymes are responsible for proper glycosylation and sialylation. In recent years, novel disorders of glycosylation caused by molecular variants in multiple genes have been described. The phenotype of the patients with genetic alterations in GNE, SLC35A1, GALE and B4GALT is consistent with syndromic manifestations, severe inherited thrombocytopenia, and hemorrhagic complications.


Subject(s)
Nucleotide Transport Proteins , Thrombocytopenia , Humans , Glycosylation , Thrombocytopenia/etiology , Blood Platelets/metabolism , Megakaryocytes/metabolism , Thrombopoiesis , Thrombopoietin , Nucleotide Transport Proteins/metabolism
13.
J Thromb Haemost ; 21(2): 344-358, 2023 02.
Article in English | MEDLINE | ID: mdl-36700501

ABSTRACT

BACKGROUND: Platelet shedding from mature megakaryocytes (MKs) in thrombopoiesis is the critical step for elevating circulating platelets fast and efficiently, however, the underlying mechanism is still not well-illustrated, and the therapeutic targets and candidates are even less. OBJECTIVES: In order to investigate the mechanisms for platelet shedding after vasopressin treatment and find new therapeutic targets for thrombocytopenia. METHODS: Platelet production was evaluated both in vivo and in vitro after arginine vasopressin (AVP) administration. The underlying biological mechanism of AVP-triggered thrombopoiesis were then investigated by a series of molecular and bioinformatics techniques. RESULTS: it is observed that proplatelet formation and platelet shedding in the final stages of thrombopoiesis promoted by AVP, an endogenous hormone, can quickly increases peripheral platelets. This rapid elevation is thus able to speed up platelet recovery after radiation as expected. The mechanism analysis reveal that proplatelet formation and platelet release from mature MKs facilitated by AVP is mainly mediated by Akt-regulated mitochondrial metabolism. In particular, phosphorylated Akt regulates mitochondrial metabolism through driving the association of hexokinase-2 with mitochondrial voltage dependent anion channel-1 in AVP-mediated thrombopoiesis. Further studies suggest that this interaction is stabilized by IκBα, the expression of which is controlled by insulin-regulated membrane aminopeptidase. CONCLUSION: these data demonstrate that phosphorylated Akt-mediated mitochondrial metabolism regulates platelet shedding from MKs in response to AVP, which will provide new therapeutic targets and further drug discovery clues for thrombocytopenia treatment.


Subject(s)
Proto-Oncogene Proteins c-akt , Thrombocytopenia , Humans , Proto-Oncogene Proteins c-akt/metabolism , Blood Platelets/metabolism , Megakaryocytes/metabolism , Thrombopoiesis/physiology , Thrombocytopenia/metabolism , Vasopressins/pharmacology , Vasopressins/metabolism
14.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674552

ABSTRACT

Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.


Subject(s)
Thrombocytopenia , Thrombopoiesis , Humans , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptors , Thrombocytopenia/metabolism , Inflammation
15.
Thromb Res ; 231: 170-181, 2023 11.
Article in English | MEDLINE | ID: mdl-36058760

ABSTRACT

Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.


Subject(s)
Blood Platelets , Thrombosis , Humans , Blood Platelets/metabolism , Megakaryocytes/pathology , Thrombopoiesis , Thrombosis/pathology , Autophagy , Biology
16.
Platelets ; 34(1): 2157382, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36550091

ABSTRACT

Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).


What is the context? Platelets are produced from progenitor cells named megakaryocytes (MKs) differentiated from bone marrow-derived hematopoietic stem cells (HSCs).Thrombopoiesis refers to the process by which platelet-producing MKs release platelet granules into peripheral blood under the shear force of blood flow for further development and maturation.The process of megakaryocytopoiesis and thrombopoiesis is affected by multiple factors, wherein some ncRNAs also exert a significant regulatory role.miRNAs/lncRNAs play a promising role in t primary immune thrombocytopenia (ITP).What is new? This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis.This article also reviewed the roles of ncRNAs in ITP.What is the impact?Changes in ncRNA expression are associated with changes in the production of MKs, thrombopoiesis, and platelet function, which allows a new understanding of the pathogenesis of many congenital or acquired platelet-related diseases.


Subject(s)
MicroRNAs , Thrombopoiesis , Humans , Thrombopoiesis/genetics , Blood Platelets/metabolism , Megakaryocytes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Untranslated/metabolism , RNA, Untranslated/pharmacology
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1004758

ABSTRACT

Platelets play a role in hemostasis in vivo, and platelet transfusion is the main means to treat bleeding diseases caused by thrombocytopenia or platelet dysfunction. However, platelets are in short supply due to the increasing demand for platelet products in clinical, the limited number of blood donors and the disadvantages of platelet products such as short shelf life and bacteria contamination. Currently, induced pluripotent stem cells are considered an ideal source for producing platelets in vitro. They have the potential for self-renewal and differentiation into any cell type, and can be obtained and manipulated easily. Given the recent advances in megakaryocytic series, bioreactors, feeder-free cell production and large-scale propagation research, platelet preparations derived from induced pluripotent stem cells have gradually shown great potential for clinical applications. Considering the minimal risk of alloimmunization and tumorigenesis with these blood products, they are promising to become the standard source of future blood transfusions. This paper reviews the research progress of the methodological techniques of in vitro generation of platelets from induced pluripotent stem cells.

18.
Immunity ; 55(12): 2285-2299.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36272416

ABSTRACT

Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.


Subject(s)
Cardiovascular Diseases , Myocardial Infarction , Thrombosis , Humans , Megakaryocytes , Thrombopoiesis , Neutrophils , Blood Platelets/physiology
19.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36297316

ABSTRACT

Thrombocytopenia is one of the most common complications of cancer therapy. Until now, there are still no satisfactory medications to treat chemotherapy and radiation-induced thrombocytopenia (CIT and RIT, respectively). Caulis Polygoni Multiflori (CPM), one of the most commonly used Chinese herbs, has been well documented to nourish blood for tranquilizing the mind and treating anemia, suggesting its beneficial effect on hematopoiesis. However, it is unknown whether CPM can accelerate megakaryopoiesis and thrombopoiesis. Here, we employ a UHPLC Q-Exactive HF-X mass spectrometer (UHPLC QE HF-X MS) to identify 11 ingredients in CPM. Then, in vitro experiments showed that CPM significantly increased megakaryocyte (MK) differentiation and maturation but did not affect apoptosis and lactate dehydrogenase (LDH) release of K562 and Meg-01 cells. More importantly, animal experiments verified that CPM treatment markedly accelerated platelet recovery, megakaryopoiesis and thrombopoiesis in RIT mice without hepatic and renal toxicities in vivo. Finally, RNA-sequencing (RNA-seq) and western blot were used to determine that CPM increased the expression of proteins related to PI3K/Akt and MEK/ERK (MAPK) signaling pathways. On the contrary, blocking PI3K/Akt and MEK/ERK signaling pathways with their specific inhibitors suppressed MK differentiation induced by CPM. In conclusion, for the first time, our study demonstrates that CPM may be a promised thrombopoietic agent and provide an experimental basis for expanding clinical use.

20.
Mol Ther Nucleic Acids ; 29: 657-671, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36090760

ABSTRACT

The use of messenger RNA (mRNA) enables the transient production of therapeutic proteins with stable and predictable translational kinetics and without the risk of insertional mutagenesis. Recent findings highlight the enormous potential of mRNA-based therapeutics. Here, we describe the synthesis of chemically modified thrombopoietin (TPO) mRNA through in vitro transcription and in vivo delivery via lipid nanoparticles (LNPs). After delivery of TPO mRNA in mice, compared with normal physiological values, plasma TPO protein levels increased over 1000-fold in a dose-dependent manner. Moreover, through a single intravenous dose of TPO mRNA-loaded LNPs, both reticulated and total platelet count increased significantly in mice, demonstrating that TPO protein derived from the exogenous mRNA was able to maintain normal activity. Submicrogram quantity of N1-methylpseudouridine-modified TPO mRNA showed a similar effect in promoting thrombopoiesis as that by the TPO receptor agonist romiplostim. In addition, a therapeutic value was established in anti-GPIbα (CD42b) antibody-induced thrombocytopenia mouse models that showed a fast recovery of platelet count. Our study demonstrated chemically modified in-vitro-transcribed TPO mRNA as a potentially safe therapeutic intervention to stimulate thrombopoiesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...