Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.982
Filter
1.
Int J Nanomedicine ; 19: 6857-6893, 2024.
Article in English | MEDLINE | ID: mdl-39005956

ABSTRACT

Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.


Subject(s)
Nanoparticles , Periodontitis , Humans , Periodontitis/therapy , Periodontitis/drug therapy , Nanoparticles/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanomedicine/methods
2.
Adv Healthc Mater ; : e2401458, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009465

ABSTRACT

3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.

3.
Article in English | MEDLINE | ID: mdl-39010729

ABSTRACT

Biomaterials capable of promoting wound healing and preventing infections remain in great demand to address the global unmet need for the treatment of chronic wounds. Phosphate-based glasses (PG) have shown potential as bioresorbable materials capable of inducing tissue regeneration, while being replaced by regenerated tissue and releasing therapeutic species. In this work, phosphate-glass-based fibers (PGF) in the system P2O5-CaO-Na2O added with 1, 2, 4, 6, and 10 mol % of the therapeutic metallic ions (TMI) Ag+, Zn2+, and Fe3+ were manufactured via electrospinning of coacervate gels. Coacervation is a sustainable, cost-effective, water-based method to produce PG. All TMI are effective in promoting wound closure (re-epithelialization) in living human skin ex vivo, where the best-performing system is PGF containing Ag+. In particular, PGF with ≥4 mol % of Ag+ is capable of promoting 84% wound closure over 48 h. These results are confirmed by scratch test migration assays, with the PGF-Ag systems containing ≥6 mol % of Ag+, demonstrating significant wound closure enhancement (up to 72%) after 24 h. The PGF-Ag systems are also the most effective in terms of antibacterial activity against both the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli. PGF doped with Zn2+ shows antibacterial activity only against S. aureus in the systems containing Zn2+ ≥ 10 mol %. In addition, PGF doped with Fe3+ rapidly accelerates ex vivo healing in patient chronic wound skin (>30% in 48 h), demonstrating the utility of doped PGF as a potential therapeutic strategy to treat chronic wounds.

4.
Clin Oral Investig ; 28(8): 426, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992200

ABSTRACT

OBJECTIVES: To assess the short-term efficacy of multiple sessions of antimicrobial photodynamic therapy (aPDT), light-emitting-diode (LED) photobiomodulation, and topical ozone therapy applications following surgical regenerative treatments on clinical parameters, patient-centered outcomes, and mRNA expression levels of VEGF, IL-6, RunX2, Nell-1, and osterix in gingival crevicular fluid samples in patients with stage III/IV, grade C periodontitis. MATERIALS AND METHODS: Forty-eight systemically healthy patients were assigned into four groups to receive adjunctive modalities with regenerative periodontal surgical treatment. A 970 ± 15 nm diode laser plus indocyanine-green for aPDT group, a 626 nm LED for photobiomodulation group, and topical gaseous ozone were applied at 0, 1, 3, and 7 postoperative days and compared to control group. The clinical periodontal parameters, early wound healing index (EHI), and postoperative patients' morbidity were evaluated. The mRNA levels of biomarkers were assessed by real-time polymerase chain reaction. RESULTS: No significant difference in the clinical parameters except gingival recession (GR) was identified among the groups. For group-by-time interactions, plaque index (PI) and probing pocket depths (PD) showed significant differences (p = 0.034; p = 0.022). In sites with initial PD > 7 mm, significant differences were observed between control and photobiomodulation groups in PD (p = 0.011), between control and aPDT, and control and photobiomodulation groups in CAL at 6-month follow-up (p = 0.007; p = 0.022). The relative osterix mRNA levels showed a statistically significant difference among the treatment groups (p = 0.014). CONCLUSIONS: The additional applications of aPDT and LED after regenerative treatment of stage III/IV grade C periodontitis exhibited a more pronounced beneficial effect on clinical outcomes in deep periodontal pockets.


Subject(s)
Lasers, Semiconductor , Low-Level Light Therapy , Ozone , Photochemotherapy , Humans , Photochemotherapy/methods , Male , Female , Ozone/therapeutic use , Adult , Low-Level Light Therapy/methods , Lasers, Semiconductor/therapeutic use , Treatment Outcome , Middle Aged , Periodontitis/therapy , Indocyanine Green/therapeutic use , Combined Modality Therapy , Real-Time Polymerase Chain Reaction , Gingival Crevicular Fluid , Biomarkers , Photosensitizing Agents/therapeutic use , Wound Healing/drug effects , Periodontal Index , Interleukin-6 , Vascular Endothelial Growth Factor A/metabolism , Core Binding Factor Alpha 1 Subunit , Sp7 Transcription Factor
5.
Regen Ther ; 26: 235-250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966602

ABSTRACT

Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.

6.
Stem Cell Res Ther ; 15(1): 205, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982541

ABSTRACT

Vascular tissue engineering is a promising approach for regenerating damaged blood vessels and developing new therapeutic approaches for heart disease treatment. To date, different sources of cells have been recognized that offer assistance within the recovery of heart supply routes and veins with distinctive capacities and are compelling for heart regeneration. However, some challenges still remain that need to be overcome to establish the full potential application of these cells. In this paper, we review the different cell sources used for vascular tissue engineering, focusing on extraembryonic tissue-derived cells (ESCs), and elucidate their roles in cardiovascular disease. In addition, we highlight the intricate interplay between mechanical and biochemical factors in regulating mesenchymal stem cell (MSC) differentiation, offering insights into optimizing their application in vascular tissues.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Regeneration , Tissue Engineering , Humans , Tissue Engineering/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Regeneration/physiology , Animals , Blood Vessels/cytology , Blood Vessels/physiology , Blood Vessels/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Cardiovascular Diseases/therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology
7.
ACS Biomater Sci Eng ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996181

ABSTRACT

Commercial mammalian collagen-based membranes used for guided tissue regeneration (GTR) in periodontal defect repair still face significant challenges, including ethical concerns, cost-effectiveness, and limited capacity for periodontal bone regeneration. Herein, an enhanced biomimetic mineralized hydroxyapatite (HAp)-fish-scale collagen (FCOL)/chitosan (CS) nanofibrous membrane was developed. Specifically, eco-friendly and biocompatible collagen extracted from grass carp fish scales was co-electrospun with CS to produce a biomimetic extracellular matrix membrane. An enhanced biomimetic mineralized HAp coating provided abundant active calcium and phosphate sites, which promoted cell osteogenic differentiation, and showed greater in vivo absorption. In vitro experiments demonstrated that the HAp-FCOL/CS membranes exhibited desirable properties with no cytotoxicity, provided a mimetic microenvironment for stem cell recruitment, and induced periodontal ligament cell osteogenic differentiation. In rat periodontal defects, HAp-FCOL/CS membranes significantly promoted new periodontal bone formation and regeneration. The results of this study indicate that low-cost, eco-friendly, and biomimetic HAp-FCOL/CS membranes could be promising alternatives to GTR membranes for periodontal regeneration in the clinic.

8.
Adv Healthc Mater ; : e2400522, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989725

ABSTRACT

In the pursuit of advancing neural tissue regeneration, biomaterial scaffolds have emerged as promising candidates, offering potential solutions for nerve disruptions. Among these scaffolds, multichannel hydrogels, characterized by meticulously designed micrometer-scale channels, stand out as instrumental tools for guiding axonal growth and facilitating cellular interactions. This study explores the innovative application of human amniotic membranes modified with methacryloyl domains (AMMA) in neural stem cell (NSC) culture. AMMA hydrogels, possessing a tailored softness resembling the physiological environment, are prepared in the format of multichannel scaffolds to simulate native-like microarchitecture of nerve tracts. Preliminary experiments on AMMA hydrogel films showcase their potential for neural applications, demonstrating robust adhesion, proliferation, and differentiation of NSCs without the need for additional coatings. Transitioning into the 3D realm, the multichannel architecture fosters intricate neuronal networks guiding neurite extension longitudinally. Furthermore, the presence of synaptic vesicles within the cellular arrays suggests the establishment of functional synaptic connections, underscoring the physiological relevance of the developed neuronal networks. This work contributes to the ongoing efforts to find ethical, clinically translatable, and functionally relevant approaches for regenerative neuroscience.

9.
Front Physiol ; 15: 1429247, 2024.
Article in English | MEDLINE | ID: mdl-39040080

ABSTRACT

Reprograming of the dental pulp somatic cells to endothelial cells is an attractive strategy for generation of new blood vessels. For tissue regeneration, vascularization of engineered constructs is crucial to improve repair mechanisms. In this study, we show that dentin matrix protein 1 (DMP1) and HUVEC-ECM scaffold enhances the differentiation potential of dental pulp stem cells (DPSCs) to an endothelial phenotype. Our results show that the differentiated DPSCs expressed endothelial markers CD31 and VE-Cadherin (CD144) at 7 and 14 days. Expression of CD31 and VE-Cadherin (CD144) were also confirmed by immunofluorescence. Furthermore, flow cytometry analysis revealed a steady increase in CD31 and VE-Cadherin (CD144) positive cells with DMP1 treatment when compared with control. In addition, integrins specific for endothelial cells were highly expressed during the differentiation process. The endothelial cell signature of differentiated DPSCs were additionally characterized for key endothelial cell markers using gene expression by RT-PCR, Western blotting, immunostaining, and RNA-seq analysis. Furthermore, the angiogenic phenotype was confirmed by tubule and capillary sprout formation. Overall, stimulation of DPSCs by DMP1 and use of HUVEC-ECM scaffold promoted their differentiation into phenotypically, transcriptionally, and functionally differentiated bonafide endothelial cells. This study is novel, physiologically relevant and different from conventional strategies.

10.
J Periodontal Res ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962931

ABSTRACT

AIM: To evaluate whether the ribosome-crosslinked collagen membrane (RCCM) is non-inferior to the natural collagen membrane (NCM) used in regeneration surgery in terms of clinical attachment level (CAL) gain at 6 months. METHODS: Eighty patients diagnosed as generalized periodontitis presenting with isolated infrabony defect (≥4 mm deep) were enrolled and randomized to receive regenerative surgery, either with NCM or RCCM, both combined with deproteinized bovine bone mineral (DBBM). CAL, pocket probing depth (PPD), and gingival recession (GR) were recorded at baseline, 3, and 6 months postoperatively. Periapical radiographs were taken at baseline, immediately, and 6 months after surgery. Early wound healing index (EHI) and patients' responses were recorded at 2 weeks postoperatively. RESULTS: At 6 months post-surgery, the mean CAL gain was 3.1 ± 1.5 mm in the NCM group and 2.9 ± 1.5 mm in the RCCM group, while the mean PPD was 4.3 ± 1.1 mm in the NCM group and 4.2 ± 1.0 mm in the RCCM group. Both groups demonstrated a statistically significant improvement from the baseline (p < .01). RCCM was non-inferior to NCM concerning the primary outcome (CAL gain at 6 months). The GR at 6 months postoperatively was 1.3 ± 1.2 and 1.2 ± 1.1 mm, which showed no difference compared with baseline. At 6 months follow-up, the radiographic linear bone fill (RLBF) was 6.5 ± 2.8 and 5.5 ± 2.6 mm (p > .05), while the bone fill percentage (BF%) was 102.3 ± 53.5% and 92.3 ± 40.1% (p > .05), in the NCM and RCCM groups, respectively. There was no significant difference in EHI and postoperative responses between two groups. CONCLUSION: RCCM + DBBM resulted in no-inferior clinical and radiographic outcomes to NCM + DBBM for the treatment of isolated infrabony defect in 6 months.

11.
J Dent (Shiraz) ; 25(2): 183-189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962083

ABSTRACT

This case report exhibits a heavy smoker female patient with a localized stage III periodontitis who has been under the smoking cessation program during the pre-surgical period, followed by a strict maintenance program for the past twelve years, after being treated with guided tissue regeneration techniques and restored with zirconia prosthetic crowns. A 50-year-old, heavy smoker (> 40 cigarettes per day), systemically healthy female patient presented complaining of mobility and pain in the upper right central incisor, which was temporarily splinted to the left central incisor using resin composite. After clinical and radiographic examination, significant damage of the attachment apparatus, deep periodontal lesions extending the middle portion of the root, and severe infrabony defect were noted. Following the initial hygienic phase, a guided tissue regeneration surgery using xenograft bone substitute covered by a resorbable collagen membrane was performed. After six months of healing, four zirconia crowns were cemented on the central and lateral incisors based on patient esthetic compliance. During the 12-year follow-up period, neither residual pockets nor gingival recession were observed, and perfect marginal bone stability, and esthetic and functional results were noted. This case shows the predictability of a conservative surgical technique, the guided tissue regeneration, based on appropriate treatment planning and a strict maintenance program. It also demonstrates the importance of at least a 6-month healing period after such surgeries, allowing complete tissue maturation and a re-establishment of the supra osseous gingival tissues in order to locate the prosthetic margins without interfering with the soft tissues integrity.

12.
J Control Release ; 372: 846-861, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38955252

ABSTRACT

Bone defect is one of the urgent problems to be solved in clinics, and it is very important to construct efficient scaffold materials to facilitate bone tissue regeneration. Hydrogels, characterized by their unique three-dimensional network structure, serve as excellent biological scaffold materials. Their internal pores are capable of loading osteogenic drugs to expedite bone formation. The rate and quality of new bone formation are intimately linked with immune regulation and vascular remodeling. The strategic sequential release of drugs to balance inflammation and regulate vascular remodeling is crucial for initiating the osteogenic process. Through the design of hydrogel microstructures, it is possible to achieve sequential drug release and the drug action time can be prolonged, thereby catering to the multi-systemic collaborative regulation needs of osteosynthesis. The drug release rate within the hydrogel is governed by swelling control systems, physical control systems, chemical control systems, and environmental control systems. Utilizing these control systems to design hydrogel materials capable of multi-drug delivery optimizes the construction of the bone microenvironment. Consequently, this facilitates the spatiotemporal controlled released of drugs, promoting bone tissue regeneration. This paper reviews the principles of the controlled release system of various sustained-release hydrogels and the advancements in research on hydrogel multi-drug delivery systems for bone tissue regeneration.

13.
Sci Rep ; 14(1): 15757, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977772

ABSTRACT

Urinary bladder dysfunction can be caused by environmental, genetic, and developmental insults. Depending upon insult severity, the bladder may lose its ability to maintain volumetric capacity and intravesical pressure resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is utilized to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) co-seeded with CD34+ hematopoietic stem/progenitor cells (HSPCs) onto a pliable synthetic scaffold [poly(1,8-octamethylene-citrate-co-octanol)(POCO)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in our baboon bladder augmentation model. We set out to determine the global protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogeneous protein expression between the tissues following long-term engraftment. We posit that stem cell-seeded scaffolds can recapitulate tissue that is nearly indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.


Subject(s)
Papio , Regeneration , Tissue Scaffolds , Urinary Bladder , Animals , Urinary Bladder/metabolism , Tissue Scaffolds/chemistry , Proteomics/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology
14.
Neurochem Int ; 178: 105801, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971503

ABSTRACT

Spinal cord injury (SCI) may cause loss of motor and sensory function, autonomic dysfunction, and thus disrupt the quality of life of patients, leading to severe disability and significant psychological, social, and economic burden. At present, existing therapy for SCI have limited ability to promote neural function recovery, and there is an urgent need to develop innovative regenerative approaches to repair SCI. Biomaterials have become a promising strategy to promote the regeneration and repair of damaged nerve tissue after SCI. Biomaterials can provide support for nerve tissue by filling cavities, and improve local inflammatory responses and reshape extracellular matrix structures through unique biochemical properties to create the optimal microenvironment at the SCI site, thereby promoting neurogenesis and reconnecting damaged spinal cord tissue. Considering the importance of biomaterials in repairing SCI, this article reviews the latest progress of multi-scale biomaterials in SCI treatment and tissue regeneration, and evaluates the relevant technologies for manufacturing biomaterials.

15.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000200

ABSTRACT

The field of regenerative medicine is increasingly in need of effective and biocompatible materials for tissue engineering. Human acellular dermal matrix (hADM)-derived collagen matrices stand out as a particularly promising candidate. Their ability to preserve structural integrity, coupled with exceptional biocompatibility, positions them as a viable choice for tissue replacement. However, their clinical application has been largely confined to serving as scaffolds. This study aims to expand the horizon of clinical uses for collagen sheets by exploring the diverse cutting-edge clinical demands. This review illustrates the clinical utilizations of collagen sheets beyond traditional roles, such as covering skin defects or acting solely as scaffolds. In particular, the potential of Epiflex®, a commercially available and immediately clinically usable allogeneic membrane, will be evaluated. Collagen sheets have demonstrated efficacy in bone reconstruction, where they can substitute the induced Masquelet membrane in a single-stage procedure, proving to be clinically effective and safe. The application of these membranes allow the reconstruction of substantial tissue defects, without requiring extensive plastic reconstructive surgery. Additionally, they are found to be apt for addressing osteochondritis dissecans lesions and for ligament reconstruction in the carpus. The compelling clinical examples showcased in this study affirm that the applications of human ADM extend significantly beyond its initial use for skin defect treatments. hADM has proven to be highly successful and well-tolerated in managing various etiologies of bone and soft tissue defects, enhancing patient care outcomes. In particular, the application from the shelf reduces the need for additional surgery or donor site defects.


Subject(s)
Acellular Dermis , Collagen , Tissue Engineering , Tissue Scaffolds , Humans , Collagen/chemistry , Tissue Engineering/methods , Acellular Dermis/metabolism , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Regenerative Medicine/methods
16.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000377

ABSTRACT

A macrophage shift from the M1 to the M2 phenotype is relevant for promoting tissue repair and regeneration. In a previous in vivo study, we found that direct current (DC) electrical stimulation (EStim) increased the proportion of M2 macrophages in healing tissues and directed the balance of the injury response away from healing/scarring towards regeneration. These observations led us to hypothesize that DC EStim regulates macrophage polarization towards an M2 phenotype. THP-1-derived M0, M1 (IFN-γ and LPS), and M2 (IL-4 and IL-13) macrophages were exposed (or not: control group) to 100 mV/mm of DC EStim, 1 h/day for three days. Macrophage polarization was assessed through gene and surface marker expressions and cytokine secretion profiles. Following DC EStim treatment, M0 cells exhibited an upregulation of M2 marker genes IL10, CD163, and PPARG. In M1 cells, DC EStim upregulated the gene expressions of M2 markers IL10, TGM2, and CD206 and downregulated M1 marker gene CD86. EStim treatment also reduced the surface expression of CD86 and secretion of pro-inflammatory cytokines IL-1ß and IL-6. Our results suggest that DC EStim differentially exerts pro-M2 effects depending on the macrophage phenotype: it upregulates typical M2 genes in M0 and M1 cells while inhibiting M1 marker CD86 at the nuclear and protein levels and the secretion of pro-inflammatory interleukins in M1 cells. Conversely, M2 cells appear to be less responsive to the EStim treatment employed in this study.


Subject(s)
Electric Stimulation , Macrophages , Phenotype , Humans , Macrophages/metabolism , Electric Stimulation/methods , THP-1 Cells , Macrophage Activation , Cytokines/metabolism , Cell Polarity , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Interleukin-4/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics
17.
Genes Dev ; 38(11-12): 569-582, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38997156

ABSTRACT

Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.


Subject(s)
Homeostasis , Regeneration , Telomerase , Telomerase/metabolism , Telomerase/genetics , Animals , Homeostasis/genetics , Homeostasis/radiation effects , Mice , Regeneration/radiation effects , Regeneration/genetics , Humans , Salivary Glands/radiation effects , Salivary Glands/metabolism , Salivary Glands/cytology , Cell Proliferation/radiation effects , Cell Proliferation/genetics , Cell Survival/radiation effects , Cell Survival/genetics , Submandibular Gland/radiation effects , Submandibular Gland/metabolism , Stem Cells/radiation effects , Stem Cells/metabolism , Stem Cells/cytology , Radiotherapy/adverse effects , Reactive Oxygen Species/metabolism , Cells, Cultured
18.
Adv Mater ; : e2402530, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924628

ABSTRACT

The compact three-dimensional (3D) structure of extracellular polymeric substances (EPS) within biofilms significantly hinders the penetration of antimicrobial agents, making biofilm eradication challenging and resulting in persistent biofilm-associated infections. To address this challenge, a solution is proposed: a probiotic bio-heterojunction (P-bioHJ) combining Lactobacillus rhamnosus with MXene (Ti3C2) quantum dots (MQDs)/FeS heterojunction. This innovation aims to break down the saccharides in EPS, enabling effective combat against biofilm-associated infections. Initially, the P-bioHJ targets saccharides through metabolic processes, causing the collapse of EPS and allowing infiltration into bacterial colonies. Simultaneously, upon exposure to near-infrared (NIR) irradiation, the P-bioHJ produces reactive oxygen species (ROS) and thermal energy, deploying physical mechanisms to combat bacterial biofilms effectively. Following antibiofilm treatment, the P-bioHJ adjusts the oxidative environment, reduces wound inflammation by scavenging ROS, boosts antioxidant enzyme activity, and mitigates the NF-κB inflammatory pathway, thereby accelerating wound healing. In vitro and in vivo experiments confirm the exceptional antibiofilm, antioxidant/anti-inflammatory, and wound-regeneration properties of P-bioHJ. In conclusion, this study provides a promising approach for treating biofilm-related infections.

19.
Polymers (Basel) ; 16(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931977

ABSTRACT

Skin tissue injuries necessitate particular care due to associated complex healing mechanisms. Current investigations in the domain of tissue engineering and regenerative medicine are focused on obtaining novel scaffolds adapted as potential delivery systems to restore lost tissue functions and properties. In this study, we describe the fabrication and evaluation of a novel 3D scaffold structure based on collagen and silk sericin (CollSS) enriched with microcapsules containing natural compounds, curcumin (C), and/or quercetin (Q). These 3D composites were characterized by FT-IR spectroscopy, water uptake, in vitro collagenase degradation, and SEM microscopy. Furthermore, they were biologically evaluated in terms of biocompatibility, cell adhesion, anti-inflammatory, and antioxidant properties. All tested materials indicated an overall suitable biocompatibility, with the best results obtained for the one containing both flavonoids. This study suggests the cumulative beneficial effect of C and Q, encapsulated in the same composite, as a potential non-invasive therapeutic strategy for skin tissue regeneration in patients suffering from chronic wounds.

20.
Cells ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891090

ABSTRACT

Autophagy is a globally conserved cellular activity that plays a critical role in maintaining cellular homeostasis through the breakdown and recycling of cellular constituents. In recent years, there has been much emphasis given to its complex role in cancer stem cells (CSCs) and stem cell treatment. This study examines the molecular processes that support autophagy and how it is regulated in the context of CSCs and stem cell treatment. Although autophagy plays a dual role in the management of CSCs, affecting their removal as well as their maintenance, the intricate interaction between the several signaling channels that control cellular survival and death as part of the molecular mechanism of autophagy has not been well elucidated. Given that CSCs have a role in the development, progression, and resistance to treatment of tumors, it is imperative to comprehend their biological activities. CSCs are important for cancer biology because they also show a tissue regeneration model that helps with organoid regeneration. In other words, the manipulation of autophagy is a viable therapeutic approach in the treatment of cancer and stem cell therapy. Both synthetic and natural substances that target autophagy pathways have demonstrated promise in improving stem cell-based therapies and eliminating CSCs. Nevertheless, there are difficulties associated with the limitations of autophagy in CSC regulation, including resistance mechanisms and off-target effects. Thus, the regulation of autophagy offers a versatile strategy for focusing on CSCs and enhancing the results of stem cell therapy. Therefore, understanding the complex interactions between autophagy and CSC biology would be essential for creating therapeutic treatments that work in both regenerative medicine and cancer treatment.


Subject(s)
Autophagy , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/metabolism , Animals , Signal Transduction , Cell- and Tissue-Based Therapy/methods , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...