ABSTRACT
OBJECTIVE: To determine the performance of late dimercaptosuccinic acid (DMSA) renal scans in identifying high-grade (III-V) vesicoureteral reflux (VUR) in children aged over 3 y with a febrile urinary tract infection (fUTI) history that has not been timely investigated. METHODS: In this retrospective study of diagnostic accuracy, the clinical records of children aged between 3 and 18 y with fUTI history evaluated consecutively at Nephrology Unit of Hospital General de Niños Pedro de Elizalde, Argentina between 2006 and 2016 were reviewed. Patients with previously diagnosed renal or urinary tract abnormalities or who underwent previous postnatal genitourinary imaging were excluded. Only those assessed by renal and bladder ultrasound (RBUS), voiding cystourethrogram (VCUG) and late 6-mo DMSA scan were analyzed. The ability of the scintigraphy in identifying high-grade VUR was determined by comparing its findings with those of VCUG. RESULTS: In 122 children (median age 5.37 y, 88.5% girls) RBUS was abnormal in 53 (43.4%) and 58 (47.5%) had VUR (30 of high-grade). Abnormal DMSA scan findings (70 patients, 57.4%) were associated with all grade (p = 0.00001) and with high-grade VUR (p = 0.00001). Sensitivity, specificity, negative (NPV) and positive (PPV) predictive values of late DMSA scans for all grades VUR were 93.1%, 75%, 92.3% and 77.1%, respectively. Only 4 patients with low-grade VUR had normal scans. For high-grade VUR, sensitivity and NPV reached 100%. CONCLUSIONS: In older children, the normal late DMSA scan predicted the absence of high-grade VUR, obviating the need for a VCUG. This approach could be a possible strategy for children not studied at acute infection time.
Subject(s)
Succimer/pharmacology , Urinary Tract Infections/diagnosis , Vesico-Ureteral Reflux/diagnosis , Adolescent , Child , Child, Preschool , Female , Humans , Kidney , Male , Radionuclide Imaging , Retrospective Studies , Sensitivity and Specificity , Ultrasonography , Urinary BladderABSTRACT
Protein functionalized cellulose fibrils were isolated from the tunic of Pyura chilensis and subsequently used to produce protein functionalized cellulose membranes. Bleached cellulose membranes were also obtained and used as reference material. FTIR and Raman spectroscopy demonstrated that the membranes are mostly constituted of cellulose along with the presence of residual proteins and pigments. Protein functionalized cellulose membranes were found to possess â¼3.1% of protein at their surface as measured by X-ray photoelectron spectroscopy. Powder X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis were used to identify and semiquantify the amount of residual sand grains present within the structure of the membranes. The presence of residual proteins was found not to significantly affect the tensile mechanical properties of the membranes. Streaming ζ-potential was used to assess surface charges of the membranes. Below pH 4, nonbleached cellulose membranes possessed highly negative surfaces charges and also significantly less negative surface charges at physiological pH when compared to bleached cellulose membranes. No significant difference was found with respect to growth kinetics of myoblasts at the surface of the membranes for cell culturing times of 48 and 72 h. After 48 h of culture, protein functionalized cellulose-based membranes that possess â¼3.1% of proteins at their surface (H1) were, however, found to promote higher cell density, cell spreading, and more orientated shape cell morphology when compared to the other cellulose-based membranes (H3 and B) evaluated in the present study.