Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(37)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38857602

ABSTRACT

The study of discotic liquid crystals (DLCs) under spherical confinement has gained considerable significance due to its relevance in the design and optimization of advanced materials with tailored properties. The unique characteristics of DLC fluids, coupled with confinement within a spherical Janus surface, offer a compelling avenue for exploring novel behaviors and emergent phenomena. In this study, Monte Carlo simulations within the NpT ensemble are employed to investigate the behavior of a DLC fluid confined by a spherical Janus surface. The Janus surface is characterized by distinct hemispheres, with one promoting homeotropic (face-on) anchoring and the other planar (edge-on) anchoring. Our analysis reveals the emergence of two topological defects: one exclusively on the edge-anchoring hemisphere and the other at the boundary of both anchorings. Each topological defect possessing a topological charge ofk= +1/2. We observe that as the temperature transitions the central region of the droplet into a nematic phase, a disclination line forms, linking the two surface defects. By investigating droplets of three different sizes, we confirm that the isotropic-nematic transition is first-order for the larger droplet studied. However, this transition becomes continuous under strong confinement conditions. In contrast, the nematic-columnar transition remains first order even for smaller systems.

2.
Materials (Basel) ; 14(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072175

ABSTRACT

Colloidal particles in nematic liquid crystals show a beautiful variety of complex phenomena with promising applications. Their dynamical behaviour is determined by topology and interactions with the liquid crystal and external fields. Here, a nematic magnetic nanocapsule reoriented periodically by time-varying magnetic fields is studied using numerical simulations. The approach combines Molecular Dynamics to resolve solute-solvent interactions and Nematic Multiparticle Collision Dynamics to incorporate nematohydrodynamic fields and fluctuations. A Saturn ring defect resulting from homeotropic anchoring conditions surrounds the capsule and rotates together with it. Magnetically induced rotations of the capsule can produce transformations of this topological defect, which changes from a disclination curve to a defect structure extending over the surface of the capsule. Transformations occur for large magnetic fields. At moderate fields, elastic torques prevent changes of the topological defect by tilting the capsule out from the rotation plane of the magnetic field.

3.
J Phys Condens Matter ; 32(50)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32985414

ABSTRACT

We investigate the ground-state and dynamical properties of nonuniform two-dimensional (2D) clusters of long-range interacting particles. We demonstrate that, when the confining external potential is designed to produce an approximate 1/r2density profile, the particles crystallize into highly ordered structures featuring spiral crystalline lines. Despite the strong inhomogeneity of the observed configurations, most of them are characterized by small density of topological defects, typical of conformal crystals, and the net topological charge induced by the simply-connected geometry of the system is concentrated near the cluster center. These crystals are shown to be robust with respect to thermal fluctuations up to a certain threshold temperature, above which the net charge is progressively redistributed from the center to the rest of the system and the topological order is lost. The crystals are also resilient to the shear stress produced by a small nonuniform azimuthal force field, rotating as a rigid body (RB). For larger forces, topological defects proliferate and the RB rotation gives place to plastic flow.

SELECTION OF CITATIONS
SEARCH DETAIL