Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Syst Biol ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085256

ABSTRACT

Time-scaled phylogenetic trees are an ultimate goal of evolutionary biology and a necessary ingredient in comparative studies. The accumulation of genomic data has resolved the tree of life to a great extent, yet timing evolutionary events remains challenging if not impossible without external information such as fossil ages and morphological characters. Methods for incorporating morphology in tree estimation have lagged behind their molecular counterparts, especially in the case of continuous characters. Despite recent advances, such tools are still direly needed as we approach the limits of what molecules can teach us. Here, we implement a suite of state-of-the-art methods for leveraging continuous morphology in phylogenetics, and by conducting extensive simulation studies we thoroughly validate and explore our methods' properties. While retaining model generality and scalability, we make it possible to estimate absolute and relative divergence times from multiple continuous characters while accounting for uncertainty. We compile and analyze one of the most data-type diverse data sets to date, comprised of contemporaneous and ancient molecular sequences, and discrete and continuous characters from living and extinct Carnivora taxa. We conclude by synthesizing lessons about our method's behavior, and suggest future research venues.

2.
Syst Biol ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041854

ABSTRACT

Combining morphological and molecular characters through Bayesian total-evidence dating allows inferring the phylogenetic and timescale framework of both extant and fossil taxa, while accounting for the stochasticity and incompleteness of the fossil record. Such an integrative approach is particularly needed when dealing with clades such as sloths (Mammalia: Folivora), for which developmental and biomechanical studies have shown high levels of morphological convergence whereas molecular data can only account for a limited percentage of their total species richness. Here, we propose an alternative hypothesis of sloth evolution that emphasizes the pervasiveness of morphological convergence and the importance of considering the fossil record and an adequate taxon sampling in both phylogenetic and biogeographic inferences. Regardless of different clock models and morphological datasets, the extant sloth Bradypus is consistently recovered as a megatherioid, and Choloepus as a mylodontoid, in agreement with molecular-only analyses. The recently extinct Caribbean sloths (Megalocnoidea) are found to be a monophyletic sister-clade of Megatherioidea, in contrast to previous phylogenetic hypotheses. Our results contradict previous morphological analyses and further support the polyphyly of "Megalonychidae", whose members were found in five different clades. Regardless of taxon sampling and clock models, the Caribbean colonization of sloths is compatible with the exhumation of islands along Aves Ridge and its geological time frame. Overall, our total-evidence analysis illustrates the difficulty of positioning highly incomplete fossils, although a robust phylogenetic framework was recovered by an a posteriori removal of taxa with high percentages of missing characters. Elimination of these taxa improved topological resolution by reducing polytomies and increasing node support. However, it introduced a systematic and geographic bias because most of these incomplete specimens are from northern South America. This is evident in biogeographic reconstructions, which suggest Patagonia as the area of origin of many clades when taxa are underrepresented, but Amazonia and/or Central and Southern Andes when all taxa are included. More generally, our analyses demonstrate the instability of topology and divergence time estimates when using different morphological datasets and clock models, and thus caution against making macroevolutionary inferences when node support is weak or when uncertainties in the fossil record are not considered.

3.
Syst Biol ; 72(6): 1316-1336, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37605524

ABSTRACT

Several total-evidence dating studies under the fossilized birth-death (FBD) model have produced very old age estimates, which are not supported by the fossil record. This phenomenon has been termed "deep root attraction (DRA)." For two specific data sets, involving divergence time estimation for the early radiations of ants, bees, and wasps (Hymenoptera) and of placental mammals (Eutheria), it has been shown that the DRA effect can be greatly reduced by accommodating the fact that extant species in these trees have been sampled to maximize diversity, so-called diversified sampling. Unfortunately, current methods to accommodate diversified sampling only consider the extreme case where it is possible to identify a cut-off time such that all splits occurring before this time are represented in the sampled tree but none of the younger splits. In reality, the sampling bias is rarely this extreme and may be difficult to model properly. Similar modeling challenges apply to the sampling of the fossil record. This raises the question of whether it is possible to find dating methods that are more robust to sampling biases. Here, we show that the skyline FBD (SFBD) process, where the diversification and fossil-sampling rates can vary over time in a piecewise fashion, provides age estimates that are more robust to inadequacies in the modeling of the sampling process and less sensitive to DRA effects. In the SFBD model we consider, rates in different time intervals are either considered to be independent and identically distributed or assumed to be autocorrelated following an Ornstein-Uhlenbeck (OU) process. Through simulations and reanalyses of Hymenoptera and Eutheria data, we show that both variants of the SFBD model unify age estimates under random and diversified sampling assumptions. The SFBD model can resolve DRA by absorbing the deviations from the sampling assumptions into the inferred dynamics of the diversification process over time. Although this means that the inferred diversification dynamics must be interpreted with caution, taking sampling biases into account, we conclude that the SFBD model represents the most robust approach currently available for addressing DRA in total-evidence dating.


Subject(s)
Ants , Placenta , Female , Pregnancy , Animals , Phylogeny , Time , Eutheria , Fossils
4.
Am J Bot ; 110(8): e16221, 2023 08.
Article in English | MEDLINE | ID: mdl-37598386

ABSTRACT

PREMISE: Acmopyle (Podocarpaceae) comprises two extant species from Oceania that are physiologically restricted to ever-wet rainforests, a confirmed fossil record based on leaf adpressions and cuticles in Australia since the Paleocene, and a few uncertain reports from New Zealand, Antarctica, and South America. We investigated fossil specimens with Acmopyle affinities from the early Eocene Laguna del Hunco site in Patagonia, Argentina. METHODS: We studied 42 adpression leafy-shoot fossils and included them in a total evidence phylogenetic analysis. RESULTS: Acmopyle grayae sp. nov. is based on heterophyllous leafy shoots with three distinct leaf types. Among these, bilaterally flattened leaves uniquely preserve subparallel, linear features that we interpret as accessory transfusion tissue (ATT, an extra-venous water-conducting tissue). Some apical morphologies of A. grayae shoots are compatible with the early stages of ovuliferous cone development. Our phylogenetic analysis recovers the new species in a polytomy with the two extant Acmopyle species. We report several types of insect-herbivory damage. We also transfer Acmopyle engelhardti from the middle Eocene Río Pichileufú flora to Dacrycarpus engelhardti comb. nov. CONCLUSIONS: We confirm the biogeographically significant presence of the endangered West Pacific genus Acmopyle in Eocene Patagonia. Acmopyle is one of the most drought-intolerant genera in Podocarpaceae, possibly due to the high collapse risk of the ATT, and thus the new fossil species provides physiological evidence for the presence of an ever-wet rainforest environment at Laguna del Hunco during the Early Eocene Climatic Optimum.


Subject(s)
Fossils , Rainforest , Phylogeny , Argentina , Australia , Cycadopsida
5.
New Phytol ; 240(4): 1616-1635, 2023 11.
Article in English | MEDLINE | ID: mdl-37302411

ABSTRACT

The determinants of biodiversity patterns can be understood using macroevolutionary analyses. The integration of fossils into phylogenies offers a deeper understanding of processes underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more diverse and globally distributed group but are restricted to low latitudes today. We still know little about their origin and geographic range evolution. Combining molecular data for extant species and leaf morphological data for extant and fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-evidence dating analyses. We assess the ancestral geographic origin and trace the historical biogeography of cycads with a time-stratified process-based model. Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gondwana in the Jurassic. Through now-vanished continental connections, Antarctica and Greenland were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic and restrained toward subtropical latitudes in the Neogene in line with biogeographic inferences of high-latitude extirpations. We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of origin and to study evolutionary processes explaining the global distribution of present-day relict groups.


Subject(s)
Cycadopsida , Fossils , Phylogeny , Bayes Theorem , Cycadopsida/anatomy & histology , Biodiversity
6.
Open Res Eur ; 3: 204, 2023.
Article in English | MEDLINE | ID: mdl-38481771

ABSTRACT

Phylogenetic estimation is, and has always been, a complex endeavor. Estimating a phylogenetic tree involves evaluating many possible solutions and possible evolutionary histories that could explain a set of observed data, typically by using a model of evolution. Modern statistical methods involve not just the estimation of a tree, but also solutions to more complex models involving fossil record information and other data sources. Markov Chain Monte Carlo (MCMC) is a leading method for approximating the posterior distribution of parameters in a mathematical model. It is deployed in all Bayesian phylogenetic tree estimation software. While many researchers use MCMC in phylogenetic analyses, interpreting results and diagnosing problems with MCMC remain vexing issues to many biologists. In this manuscript, we will offer an overview of how MCMC is used in Bayesian phylogenetic inference, with a particular emphasis on complex hierarchical models, such as the fossilized birth-death (FBD) model. We will discuss strategies to diagnose common MCMC problems and troubleshoot difficult analyses, in particular convergence issues. We will show how the study design, the choice of models and priors, but also technical features of the inference tools themselves can all be adjusted to obtain the best results. Finally, we will also discuss the unique challenges created by the incorporation of fossil information in phylogenetic inference, and present tips to address them.

7.
J Exp Bot ; 73(13): 4273-4290, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35394022

ABSTRACT

Systematics reconstructs tempo and mode in biological evolution by resolving the phylogenetic fabric of biodiversity. The staggering duration and complexity of evolution, coupled with loss of information (extinction), render exhaustive reconstruction of the evolutionary history of life unattainable. Instead, we sample its products-phenotypes and genotypes-to generate phylogenetic hypotheses, which we sequentially reassess and update against new data. Current consensus in evolutionary biology emphasizes fossil integration in total-evidence analyses, requiring in-depth understanding of fossils-age, phenotypes, and systematic affinities-and a detailed morphological framework uniting fossil and extant taxa. Bryophytes present a special case: deep evolutionary history but sparse fossil record and phenotypic diversity encompassing small dimensional scales. We review how these peculiarities shape fossil inclusion in bryophyte systematics. Paucity of the bryophyte fossil record, driven primarily by phenotypic (small plant size) and ecological constraints (patchy substrate-hugging populations), and incomplete exploration, results in many morphologically isolated, taxonomically ambiguous fossil taxa. Nevertheless, instances of exquisite preservation and pioneering studies demonstrate the feasibility of including bryophyte fossils in evolutionary inference. Further progress will arise from developing extensive morphological matrices for bryophytes, continued exploration of the fossil record, re-evaluation of previously described fossils, and training specialists in identification and characterization of bryophyte fossils, and in bryophyte morphology.


Subject(s)
Bryophyta , Fossils , Biodiversity , Biological Evolution , Bryophyta/genetics , Phylogeny
8.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35137183

ABSTRACT

Deciphering the evolutionary relationships of Chelicerata (arachnids, horseshoe crabs, and allied taxa) has proven notoriously difficult, due to their ancient rapid radiation and the incidence of elevated evolutionary rates in several lineages. Although conflicting hypotheses prevail in morphological and molecular data sets alike, the monophyly of Arachnida is nearly universally accepted, despite historical lack of support in molecular data sets. Some phylotranscriptomic analyses have recovered arachnid monophyly, but these did not sample all living orders, whereas analyses including all orders have failed to recover Arachnida. To understand this conflict, we assembled a data set of 506 high-quality genomes and transcriptomes, sampling all living orders of Chelicerata with high occupancy and rigorous approaches to orthology inference. Our analyses consistently recovered the nested placement of horseshoe crabs within a paraphyletic Arachnida. This result was insensitive to variation in evolutionary rates of genes, complexity of the substitution models, and alternative algorithmic approaches to species tree inference. Investigation of sources of systematic bias showed that genes and sites that recover arachnid monophyly are enriched in noise and exhibit low information content. To test the impact of morphological data, we generated a 514-taxon morphological data matrix of extant and fossil Chelicerata, analyzed in tandem with the molecular matrix. Combined analyses recovered the clade Merostomata (the marine orders Xiphosura, Eurypterida, and Chasmataspidida), but merostomates appeared nested within Arachnida. Our results suggest that morphological convergence resulting from adaptations to life in terrestrial habitats has driven the historical perception of arachnid monophyly, paralleling the history of numerous other invertebrate terrestrial groups.


Subject(s)
Arachnida , Animals , Arachnida/genetics , Biological Evolution , Fossils , Genome , Phylogeny
9.
Evol Anthropol ; 31(3): 138-153, 2022 May.
Article in English | MEDLINE | ID: mdl-35102633

ABSTRACT

In recent years, multiple technological and methodological advances have increased our ability to estimate phylogenies, leading to more accurate dating of the primate tree of life. Here we provide an overview of the limitations and potentials of some of these advancements and discuss how dated phylogenies provide the crucial temporal scale required to understand primate evolution. First, we review new methods, such as the total-evidence dating approach, that promise a better integration between the fossil record and molecular data. We then explore how the ever-increasing availability of genomic-level data for more primate species can impact our ability to accurately estimate timetrees. Finally, we discuss more recent applications of mutation rates to date divergence times. We highlight example studies that have applied these approaches to estimate divergence dates within primates. Our goal is to provide a critical overview of these new developments and explore the promises and challenges of their application in evolutionary anthropology.


Subject(s)
Fossils , Primates , Animals , Evolution, Molecular , Phylogeny , Primates/genetics
10.
Mol Phylogenet Evol ; 166: 107327, 2022 01.
Article in English | MEDLINE | ID: mdl-34666169

ABSTRACT

The importance of morphology in the phylogenomic era has recently gained attention, but relatively few studies have combined both types of information when inferring phylogenetic relationships. Sanger sequencing legacy data can also be important for understanding evolutionary relationships. The possibility of combining genomic, morphological and Sanger data in one analysis seems compelling, permitting a more complete sampling and yielding a comprehensive view of the evolution of a group. Here we used these three data types to elucidate the systematics and evolution of the Dionycha, a highly diverse group of spiders relatively underrepresented in phylogenetic studies. The datasets were analyzed separately and combined under different inference methods, including a novel approach for analyzing morphological matrices with commonly used evolutionary models. We tested alternative hypotheses of relationships and performed simulations to investigate the accuracy of our findings. We provide a comprehensive and thorough phylogenetic hypothesis for Dionycha that can serve as a robust framework to test hypotheses about the evolution of key characters. We also show that morphological data might have a phylogenetic impact, even when massively outweighed by molecular data. Our approach to analyze morphological data may serve as an alternative to the proposed practice of arbitrarily partitioning, weighting, and choosing between parsimony and stochastic models. As a result of our findings, we propose Trachycosmidae new rank for a group of Australian genera formerly included in Trochanteriidae and Gallieniellidae, and consider Ammoxenidae as a junior synonym of Gnaphosidae. We restore the family rank for Prodidomidae, but transfer the subfamily Molycriinae to Gnaphosidae. Drassinella is transferred to Liocranidae, Donuea to Corinnidae, and Mahafalytenus to Viridasiidae.


Subject(s)
Genomics , Phenotype , Phylogeny , Spiders , Animals , Australia , Genome , Spiders/classification , Spiders/genetics
11.
Zoologica Scripta, v. 00, p. 1-21, set. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4513

ABSTRACT

Despite the recent advances in the systematics of snakes, the diversity of several Neotropical groups of species remains poorly understood. The lack of studies focused on the phylogenetic relationship within most of the 20 tribes of Dipsadidae precludes a better understanding of the evolution of this diverse family. Here, we present a comprehensive phylogenetic analysis of Tachymenini, a heterogeneous tribe that comprises 36 viviparous species of dipsadids, grouped in seven genera based on morphological similarities. The tribe is widely distributed throughout South America presenting very distinctive phenotypes, habitats, and behaviours. The phylogenetic relationship among tachymenins is a well-recognized challenge regarding the systematics of the South American dipsadids. The similar morphotype of some generalist species, combined with the very derived morphology of some strict specialists, creates a complexity of traits that has prevented the comprehension of the systematics of the group. To address such a challenge, we combine molecular (six loci) and morphological (70 characters) datasets in an integrative phylogenetic approach. The resultant phylogenetic trees indicate, with strong support, that three of the seven current recognized genera (Tachymenis, Tomodon, and Thamnodynastes) are non-monophyletic and, consequently, we propose a new systematic arrangement for Tachymenini. We revalidate two genera, Dryophylax and Mesotes, and we describe three additional monotypic genera, Apographon gen. n., Tachymenoides gen. n., and Zonateres gen. n. to accommodate Tomodon orestes, Tachymenis affinis, and Thamnodynastes lanei, respectively. We also include Tomodon ocellatus and Pseudotomodon trigonatus in Tachymenis and describe a new genus, Galvarinus gen. n., to accommodate the Tachymenis chilensis species group. Furthermore, we also provide an evolutionary scenario for the speciation events based on a time-calibrated tree, commenting on the diversification and origin of the tribe, and on the probable existence of undescribed species of Mesotes and Dryophylax.

12.
Zool J Linn Soc, in press, zlac001, mai. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4355

ABSTRACT

Recent phylogenetic analyses differ in their interpretations of the origin and interrelationships of snakes, resulting in polarized views of snake ecology, habit and acquisition of features associated with wide-gaped feeding (macrostomy). Here, we report a new specimen of the Late Cretaceous nest predator Sanajeh indicus that helps to resolve the origin of macrostomy. The new specimen preserves an ossified upper temporal bar and a posteriorly expanded otooccipital region that lacks a free-ending supratemporal bone and retains a lizard-like palatomaxillary arch that allows limited movements during swallowing. Phylogenetic analyses of a large-scale total evidence dataset resolve Sanajeh near the base of Pan-Serpentes, as the sister group of Najash, Dinilysia and crown-group Serpentes. The Cretaceous Tetrapodophis and Coniophis represent the earliest-diverging members of Pan-Serpentes. The Cretaceous hindlimbed pachyophiids and Cenozoic Australian ‘madtsoiids’ are inside crown Alethinophidia, whereas mosasaurs are recovered invariably within anguimorphs. Our results suggest that the wide-gape condition in mosasaurs and snakes might have evolved independently, as functionally distinct mechanisms of prey ingestion. The intermediate morphology preserved in Sanajeh indicates that ingestion of large prey items (macrophagy) preceded wide-gaped, unilateral feeding (macrostomy), which appeared 35 Myr later, in the common ancestor of pachyophiids, Cenozoic Australian ‘madtsoiids’ and alethinophidians.

13.
Curr Zool ; 67(5): 501-513, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34616948

ABSTRACT

As the second largest and most diverse group in the superfamily Aphidoidea, the phylogeny of drepanosiphine aphids sensu lato (s.l.) is critical for discussing the evolution of aphids. However, the taxa composition and phylogenetic relationships of drepanosiphine aphids s.l. have not been fully elucidated to date. In this study, based on total-evidence analyses combining 4 molecular genes (3 mitochondrial, COI, tRNA-Leu/COII, and CytB; 1 nuclear, EF-1ɑ) and 64 morphological and biological characteristics, the phylogeny of this group was reconstructed for the first time at the subfamily level using different datasets, parsimonies and model-based methods. All of our phylogenetic inferences clearly indicated that the drepanosiphine aphids s.l. was not a monophyletic group and seemed to support the division of the drepanosiphine aphids s.l. into different groups classified at the subfamily level. Calaphidinae was also not a monophyletic group, and Saltusaphidinae was nested within this subfamily. Drepanosiphinae was not clustered with Chaitophorinae, which was inconsistent with the previous hypothesis of a close relationship between them, illustrating that their phylogeny remains controversial. Overall, some groups of drepanosiphine aphids s.l., including Phyllaphidinae, Macropodaphidinae, Pterastheniinae, Lizeriinae, Drepanosiphinae, Spicaphidinae, Saltusaphidinae, and Calaphidinae, clustered together and might constitute the actual drepanosiphine aphids s.l. To a certain extent, our results clarified the phylogenetic relationships among drepanosiphine aphids s.l. and confirmed their taxonomic status as subfamilies.

14.
Mol Biol Evol ; 38(11): 4674-4682, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34343318

ABSTRACT

We introduce a supervised machine learning approach with sparsity constraints for phylogenomics, referred to as evolutionary sparse learning (ESL). ESL builds models with genomic loci-such as genes, proteins, genomic segments, and positions-as parameters. Using the Least Absolute Shrinkage and Selection Operator, ESL selects only the most important genomic loci to explain a given phylogenetic hypothesis or presence/absence of a trait. ESL models do not directly involve conventional parameters such as rates of substitutions between nucleotides, rate variation among positions, and phylogeny branch lengths. Instead, ESL directly employs the concordance of variation across sequences in an alignment with the evolutionary hypothesis of interest. ESL provides a natural way to combine different molecular and nonmolecular data types and incorporate biological and functional annotations of genomic loci in model building. We propose positional, gene, function, and hypothesis sparsity scores, illustrate their use through an example, and suggest several applications of ESL. The ESL framework has the potential to drive the development of a new class of computational methods that will complement traditional approaches in evolutionary genomics, particularly for identifying influential loci and sequences given a phylogeny and building models to test hypotheses. ESL's fast computational times and small memory footprint will also help democratize big data analytics and improve scientific rigor in phylogenomics.


Subject(s)
Genome , Genomics , Phylogeny
15.
Mol Phylogenet Evol ; 159: 107106, 2021 06.
Article in English | MEDLINE | ID: mdl-33601027

ABSTRACT

The ability of lineages to disperse over evolutionary timescales may be influenced by the gain or loss of traits after adaptation to new ecological conditions. For example, rails (Aves: Rallidae) have many cases of flightless insular endemic species that presumably evolved after flying ancestors dispersed over large ocean barriers and became isolated. Nonetheless, the details of how flying and its loss have influenced the clade's historical biogeography are unknown, as is the importance of other predictors of dispersal such as the geographic distance between regions. Here, we used a dated phylogeny of 158 species of rails to compare trait-dependent and trait-independent biogeography models in BioGeoBEARS. We evaluated a probabilistic historical biogeographical model that allows geographic range and flight to co-evolve and influence dispersal ability on a phylogeny. The best-fitting dispersal model was a trait-dependent dispersal (DEC + j + x + t21 + m1) that accrued 85.2% of the corrected Akaike Information Criterion (AICc) model weight. The distance-dependence parameter, x was estimated at -0.54, ranging from -0.49 to -0.65 across models, suggesting that a doubling of dispersal distance results in an approximately 31% decrease in dispersal rate (2-0.54 = 0.69). The estimated rate of loss of flight (t21) was similar across all models (~0.029 loss events per lineage per million years). The multiplier on dispersal rate when a lineage is non-flying, m1, is estimated to be 0.38 under this model. Surprisingly, the estimate of m1 was not 0.0, probably because the loss of flight is so common in the rails that entire clades of flightless species are found in the data, forcing the model to attribute some dispersal to flightless lineages. These results indicate that long-distance dispersal over macroevolutionary timespans can be modelled, rather than simply attributed to chance, allowing support for different hypotheses to be quantified and limitations to be identified. Overall, by combining new analytical methods with a comprehensive phylogeny, we use a quantitative framework to show how traits influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.


Subject(s)
Biological Evolution , Birds/classification , Phylogeny , Animals , Models, Genetic , Models, Statistical , Phenotype , Phylogeography
16.
J Bioinform Comput Biol ; 18(6): 2050040, 2020 12.
Article in English | MEDLINE | ID: mdl-33155874

ABSTRACT

Phylogenetic inference proposes an evolutionary hypothesis for a group of taxa which is usually represented as a phylogenetic tree. The use of several distinct biological evidence has shown to produce more resolved phylogenies than single evidence approaches. Currently, two conflicting paradigms are applied to combine biological evidence: taxonomic congruence (TC) and total evidence (TE). Although the literature recommends the application of these paradigms depending on the congruence of the input data, the resultant evolutionary hypotheses could vary according to the strategy used to combine the biological evidence biasing the resultant topologies of the trees. In this work, we evaluate the ability of different strategies associated with both paradigms to produce integrated evolutionary hypotheses by considering different features of the data: missing biological evidence, diversity among sequences, complexity, and congruence. Using datasets from the literature, we compare the resultant trees with reference hypotheses obtained by applying two inference criteria: maximum parsimony and likelihood. The results show that methods associated with TE paradigm are more robust compared to TC methods, obtaining trees with more similar topologies in relation to reference trees. These results are obtained regardless of (1) the features of the data, (2) the estimated evolutionary rates, and (3) the criteria used to infer the reference evolutionary hypotheses.


Subject(s)
Biological Evolution , Phylogeny , Animals , Bayes Theorem , Classification/methods , Computational Biology , Consensus Sequence , Databases, Genetic/statistics & numerical data , Humans , Least-Squares Analysis , Likelihood Functions , Models, Genetic , Primates/classification , Primates/genetics , Software
17.
Front Genet ; 11: 526, 2020.
Article in English | MEDLINE | ID: mdl-32536940

ABSTRACT

I present here an in-depth, although non-exhaustive, review of two topics in molecular dating. Clock models, which describe the evolution of the rate of evolution, are considered first. Some of the shortcomings of popular approaches-uncorrelated clock models in particular-are presented and discussed. Autocorrelated models are shown to be more reasonable from a biological perspective. Some of the most recent autocorrelated models also rely on a coherent treatment of instantaneous and average substitution rates while previous models are based on implicit approximations. Second, I provide a brief overview of the processes involved in collecting and preparing fossil data. I then review the main techniques that use this data for calibrating the molecular clock. I argue that, in its current form, the fossilized birth-death process relies on assumptions about the mechanisms underlying fossilization and the data collection process that may negatively impact the date estimates. Node-dating approaches make better use of the data available, even though they rest on paleontologists' intervention to prepare raw fossil data. Altogether, this study provides indications that may help practitioners in selecting appropriate methods for molecular dating. It will also hopefully participate in defining the contour of future methodological developments in the field.

18.
Am J Bot ; 107(5): 806-832, 2020 05.
Article in English | MEDLINE | ID: mdl-32388874

ABSTRACT

PREMISE: Eocene floras of Patagonia document biotic response to the final separation of Gondwana. The conifer genus Araucaria, distributed worldwide during the Mesozoic, has a disjunct extant distribution between South America and Australasia. Fossils assigned to Australasian Araucaria Sect. Eutacta usually are represented by isolated organs, making diagnosis difficult. Araucaria pichileufensis E.W. Berry, from the middle Eocene Río Pichileufú (RP) site in Argentine Patagonia, was originally placed in Sect. Eutacta and later reported from the early Eocene Laguna del Hunco (LH) locality. However, the relationship of A. pichileufensis to Sect. Eutacta and the conspecificity of the Araucaria material among these Patagonian floras have not been tested using modern methods. METHODS: We review the type material of A. pichileufensis alongside large (n = 192) new fossil collections of Araucaria from LH and RP, including multi-organ preservation of leafy branches, ovuliferous complexes, and pollen cones. We use a total evidence phylogenetic analysis to analyze relationships of the fossils to Sect. Eutacta. RESULTS: We describe Araucaria huncoensis sp. nov. from LH and improve the whole-plant concept for Araucaria pichileufensis from RP. The two species respectively resolve in the crown and stem of Sect. Eutacta. CONCLUSIONS: Our results confirm the presence and indicate the survival of Sect. Eutacta in South America during early Antarctic separation. The exceptionally complete fossils significantly predate several molecular age estimates for crown Eutacta. The differentiation of two Araucaria species demonstrates conifer turnover during climate change and initial South American isolation from the early to middle Eocene.


Subject(s)
Araucaria , Fossils , Antarctic Regions , Australasia , Phylogeny , South America
19.
Am J Bot ; 107(1): 139-147, 2020 01.
Article in English | MEDLINE | ID: mdl-31903551

ABSTRACT

PREMISE: The mahogany family (Meliaceae) is an angiosperm lineage comprising many species that are important elements in tropical ecosystems, and is often used as a study system to understand the evolution of tropical rainforests. While divergence time studies have estimated a Cretaceous origin for the family, no unequivocal fossils of that age have been described. Here, the first Cretaceous evidence for Meliaceae is reported, based on an exceptionally well-preserved fruit from the Upper Cretaceous (79-72 Ma, Campanian) of North America. METHODS: The fossil fruit was prepared using traditional paleobotanical techniques. Bayesian phylogenetic analyses using morphological and molecular data were conducted to assess the phylogenetic position of the Cretaceous fruit in Meliaceae and to assess the effect of morphology for inferring the overall pattern of phylogeny for the family. RESULTS: The fruit consists of a fleshy mesocarp and a woody endocarp with a hollow center, nine locules, loculicidal sutures, and one subapically attached seed per locule that has an enlarged sarcotesta near the hilum. The combination of characters in this fruit is strikingly similar to the genus Melia L. Phylogenetic analyses recover the Cretaceous fruit as being closely related to Melia and highlights the effect of fruit morphological data for inferring the overall pattern of phylogeny in Meliaceae. There are a few structural differences between the fossil fruit of this study and Melia; thus, the newly characterized Cretaceous taxon is named Manchestercarpa vancouverensis gen. et sp. nov. DISCUSSION: These results clearly confirm a Cretaceous origin for Meliaceae and that important tropical families were present prior to the development of modern tropical ecosystems in the Cenozoic.


Subject(s)
Fossils , Meliaceae , Bayes Theorem , Ecosystem , North America , Phylogeny
20.
Syst Biol ; 69(2): 325-344, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31132125

ABSTRACT

Bayesian molecular dating is widely used to study evolutionary timescales. This procedure usually involves phylogenetic analysis of nucleotide sequence data, with fossil-based calibrations applied as age constraints on internal nodes of the tree. An alternative approach is tip-dating, which explicitly includes fossil data in the analysis. This can be done, for example, through the joint analysis of molecular data from present-day taxa and morphological data from both extant and fossil taxa. In the context of tip-dating, an important development has been the fossilized birth-death process, which allows non-contemporaneous tips and sampled ancestors while providing a model of lineage diversification for the prior on the tree topology and internal node times. However, tip-dating with fossils faces a number of considerable challenges, especially, those associated with fossil sampling and evolutionary models for morphological characters. We conducted a simulation study to evaluate the performance of tip-dating using the fossilized birth-death model. We simulated fossil occurrences and the evolution of nucleotide sequences and morphological characters under a wide range of conditions. Our analyses of these data show that the number and the maximum age of fossil occurrences have a greater influence than the degree of among-lineage rate variation or the number of morphological characters on estimates of node times and the tree topology. Tip-dating with the fossilized birth-death model generally performs well in recovering the relationships among extant taxa but has difficulties in correctly placing fossil taxa in the tree and identifying the number of sampled ancestors. The method yields accurate estimates of the ages of the root and crown group, although the precision of these estimates varies with the probability of fossil occurrence. The exclusion of morphological characters results in a slight overestimation of node times, whereas the exclusion of nucleotide sequences has a negative impact on inference of the tree topology. Our results provide an overview of the performance of tip-dating using the fossilized birth-death model, which will inform further development of the method and its application to key questions in evolutionary biology.


Subject(s)
Classification/methods , Computer Simulation , Fossils , Models, Biological , Phylogeny , Sequence Analysis, DNA , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...