ABSTRACT
The increasing expansion of urban areas leads to the emergence of new noisy environments that can affect animal communication. Calls play a crucial role in the mating displays of anurans, and the negative impact of anthropogenic noise-induced auditory masking has been reported in several species. We investigated the acoustic variation in 96 males (nâ =â 971 calls) of the treefrog Boana pulchella across acoustically undisturbed sites and different noise conditions, associated with urban areas (URBAN) and roads (ROAD), in Central Argentina. We analyzed the effect of anthropogenic noise conditions on 6 temporal (call duration [CD], intercall interval, first and second note duration, internote interval, and call rate) and 3 spectral (dominant frequency of first and second note, frequency difference between them) call properties. The effects of temperature and size on acoustical variables were controlled. We observed differences in all call attributes among the noise conditions, except for intercall interval. Males exposed to URBAN and ROAD exhibited significant changes in CD, dominant frequency of the second note, and frequency difference between them. URBAN males had longest internote interval, while ROAD individuals displayed increased first and second note duration and call rates. Interestingly, ROAD males exhibited immediate changes in call rate in direct response to passing heavy vehicles. Our study emphasizes the impact of anthropogenic noise on the acoustic characteristics of B. pulchella calls. Understanding how animals adapt to noisy environments is crucial in mitigating the adverse effects of urbanization on their communication systems. Future investigations should explore whether the observed call adjustments are effective in avoiding or mitigating the negative consequences of anthropogenic noise on reproductive success.
ABSTRACT
Road traffic is the primary source of environmental noise pollution in cities. This problem is also spreading due to inadequate urban expansion planning. Hence, integrating road traffic noise analysis into urban planning is necessary for reducing city noise in an effective, adaptable, and sustainable way. This study aims to develop a methodology that applies to any city for the stratification of urban roads by their functionality through only their urban features. It is intended to be a tool to cluster similar streets and, consequently, traffic noise to enable urban and transportation planners to support the reduction of people's noise exposure. Three multivariate ordered logistic regression statistical models (Model 1, 2, and 3) are presented that significantly stratify urban roads into five, four, and three categories, respectively. The developed models exhibit a McFadden pseudo-R2 between 0.5 and 0.6 (equivalent to R2 >0.8). The choice between Model 1 or 2 depends on the scale of the city. Model 1 is recommended for developed cities with an extensive road network, while Model 2 is most suitable in intermediate and growing cities. On the other hand, Model 3 could be applied at any city scale but focused on local management of transit routes and for designing acoustic sensor installations, urban soundwalks, and identification of quiet areas. Urban features related to road width and length, presence of transport infrastructure, and public transport routes are associated with increased traffic noise in all three models. These models prove useful for future action plans aimed at reducing noise through strategic urban planning.
ABSTRACT
Faced with the accelerated growth of cities and the consequent increase in the number of motor vehicles, urban noise levels caused by vehicular traffic have increased considerably. To assess noise levels in cities and implement noise control measures or identify the problem's location in different urban areas, it is necessary to obtain the noise levels to which people are exposed. Noise maps are tools that have applications as they are cartographic representations of the noise level distribution in an area and over a period of time. This article aims to identify, select, evaluate, and synthesize information, through a systematic literature review, on using different road noise prediction models, in sound mapping computer programs in countries that do not have a standard noise prediction model. The analysis period was from 2018 to 2022. From a previous analysis of articles, the choice of topic was based on identifying various models for predicting road noise in countries without a standardized sound mapping model. The papers compiled by a systematic literature review showed that studies concentrated in China, Brazil, and Ecuador, the most used traffic noise prediction models, were the RLS-90 and the NMPB, and the most used mapping programs were SoundPLAN and ArcGIS with a grid size of 10 × 10 m. Most measurements were carried out during a 15-min period at a height from the ground level of 1.5 m. In addition, it was observed that research on noise maps in countries that do not have a local model has been increasing over time.
Subject(s)
Environmental Monitoring , Noise, Transportation , Humans , Motor Vehicles , Cities , ChinaABSTRACT
The behavior of environmental noise in developing countries is conditioned by characteristics that are not only linked to transport, infrastructures, and industrial plants in the annuity (common representation in noise maps), but also to other types of sources and periodicities that can influence significantly in noise levels. For this reason, this work proposes different temporal analyzes during the annuity that can be linked to the noisy activities typical of developing tropical countries. To do this, a noise monitoring network composed of seven monitors representing different sources present in the Aburrá Valley (AV) in Colombia is analyzed with measurements of LAeq, every hour, in a period between August 2016 and July 2019. The results show that AV noise is strongly influenced by leisure activities related to high-power sound systems, different celebrations, and continuous noise from car traffic that affect the population mainly on weekends and nights. This work marks a clear path to precisely address noise pollution in the action plans of developing countries.
Subject(s)
Environmental Monitoring , Noise , Colombia , Developing Countries , Environmental Monitoring/methods , Manufacturing and Industrial FacilitiesABSTRACT
Recently, the issue of sound quality inside vehicles has attracted interest from both researchers and industry alike due to health concerns and also to increase the appeal of vehicles to consumers. This work extends the analysis of interior acoustic noise inside a vehicle under several conditions by comparing measured power levels and two different models for acoustic noise, namely the Gaussian and the alpha-stable distributions. Noise samples were collected in a scenario with real traffic patterns using a measurement setup composed of a Raspberry Pi Board and a microphone strategically positioned. The analysis of the acquired data shows that the observed noise levels are higher when traffic conditions are good. Additionally, the interior noise presented considerable impulsiveness, which tends to be more severe when traffic is slower. Finally, our results suggest that noise sources related to the vehicle itself and its movement are the most relevant ones in the composition of the interior acoustic noise.
Subject(s)
Acoustics , Noise , SoundABSTRACT
Environmental legislation in Ecuador is advancing with the legitimate aspiration of providing citizens with new standards of quality and environmental health. In the context of environmental noise, these legislative advances are based on the experience accumulated in other countries, which is an advantage that must be managed with caution by incorporating local factors into noise management procedures. This study advances two lines of work. The first is to survey the population about their attitude towards noise from a major road to try to detect local factors in the annoyance and sleep disturbances. The second uses this information to compare noise indicators for the detection and ranking of hot-spots from major roads. The interviewees exhibited a high level of annoyance and sleep disturbance due to noise compared with the results of other studies. Results show that there are small differences in the definition of hot-spots when using WHO's dose-response curves for Lden ≥ 68 dB for and for Lnight ≥ 58 dB, in comparison with the curves generated in this study (CS). Regarding the application of both dose-response curves (WHO vs. CS) to the estimation of the population at risk of the harmful effect of nighttime traffic noise (HSD), small oscillations are also observed even when Lnight ≥ 58 dB and Lnoche ≥ 60 dB are used.
Subject(s)
Noise, Transportation , Sleep Wake Disorders , Ecuador , Environmental Exposure , Humans , Noise, Transportation/adverse effects , Sleep Wake Disorders/epidemiology , Surveys and QuestionnairesABSTRACT
Aim: The presence of noise in urban environments is rarely considered a factor that causes damage to the environment. The primary generating source is transportation means, with vehicles being the ones that affect cities the most. Traffic noise has a particular influence on the quality of life of those who are exposed to it and can cause health alterations ranging from annoyance to cardiovascular diseases. This study aims to describe the relationship between the traffic noise level and the perceived annoyance in the inhabitants of a city on the Northern Border of Mexico. The work carried out in a city represents the vulnerability characteristics: economic, social, and migratory of its sizable portion of the inhabitants. Due to that, it is impossible to identify precisely the number of residents as the number of vehicles in circulation. Methods: The streets and avenues with an annual average daily traffic of more than 1,000 vehicles were considered for the measurement of traffic noise. The equipment used was a vehicle gauge with non-invasive speed radar; type I integrating sound level meters, with their respective gauges and tripods. A questionnaire was applied to people living within 250 m of the streets and avenues in which the noise was measured. Results: The noise measurement found a parameter of LAeq estimated for 12 h during the day, exceeding 70 dBA. The data received from the questionnaire were statistically tested by using Pearson's correlation tests. A total number of 2,350 people were participated, of whom 1,378 were women (58.6%) and 972 were men (41.4%). The age of participants is ranged from 18 to 75 years. The overall perception of traffic noise annoyance identified that 1,131 participants (48.1%) responded "Yes" as they considered the noise annoying. Participants who responded "No" as well as those who responded "Do not know" resulted in a total of 1,219 people (51.9%). Conclusion: The results show that the population is desensitized to traffic noise and does not perceive it as an annoyance. The flow of vehicles and the type of vehicles are the significant factors for the propagation and increase in the traffic noise levels. Women present a considerable appreciation of traffic noise perception instead of younger people who demonstrate a higher tolerance to high-level exposure. This reflects the lack of information of the population around the noise problem and its effects.
ABSTRACT
In many countries such as Chile, there is scarce official information for generating accurate noise maps. Therefore, specific simplification methods are becoming a real need for the acoustic community in developing countries. Thus, the main purpose of this work was to evaluate and apply simplified methods to generate a cost-effective traffic noise map of a small city of Chile. The experimental design involved the simplification of the cartographic information on buildings by clustering the households within a block, and the classification of the vehicular traffic flows into categories to generate an inexpensive noise map. The streets have been classified according to the official road classification of the country. Segregation of vehicles from light, heavy and motorbikes is made to account for traffic flow. In addition, a number of road traffic noise models were compared with noise measurements and consequently the road traffic model RLS-90 was chosen to generate the noise map of the city using the Computer Aided Noise Abatement (CadnaA) software. It was observed a direct dependence between noise levels and traffic flow versus each category of street used. The methodology developed in this study appears to be convenient in developing countries to obtain accurate approximations to develop inexpensive traffic noise maps.
ABSTRACT
BACKGROUND: Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. RESULTS: First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). CONCLUSIONS: According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.
ABSTRACT
A noise map is a cartographic representation of the noise level distribution in a determined area and period of time. This article presents the most important aspects of the noise mapping project across Santiago, a city of nearly six million inhabitants. The study was performed employing limited information and a low-cost, vehicular traffic noise predictive model. The methodology applied to the Chilean experience can also be used to create noise maps for major cities. An evaluation of noise prediction models, considering simplifications of the modeling environment (buildings) and for the vehicular traffic flow rates attributed to the streets under study, was made. The noise levels were modeled according to recommended exposure values for the above area. The results revealed that the noise levels for the city of Santiago were high in a relevant percentage of the surface.