Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514892

ABSTRACT

Distributed acoustic sensors (DAS) utilize optical fibers to monitor vibrations across thousands of independent locations. However, the measured acoustic waveforms experience significant variations along the sensing fiber. These differences primarily arise from changes in coupling between the fiber and its surrounding medium as well as acoustic interferences. Here, a correlation-based method is proposed to automatically find the spatial locations of DAS where temporal waveforms are repeatable. Signal repeatability is directly associated with spatial monitoring locations with both good coupling and low acoustic interference. The DAS interrogator employed is connected to an over 30-year-old optical fiber installed alongside a railway track. Thus, the optical fiber exhibits large coupling changes and different installation types along its path. The results indicate that spatial monitoring locations with good temporal waveform repeatability can be automatically discriminated using the proposed method. The correlation between the temporal waveforms acquired at locations selected by the algorithm proved to be very high considering measurements taken for three days, the first two on consecutive days and the third one a month after the first measurement.

2.
Sensors (Basel) ; 20(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941137

ABSTRACT

Distributed acoustic sensing (DAS) over tens of kilometers of fiber optic cables is well-suited for monitoring extended railway infrastructures. As DAS produces large, noisy datasets, it is important to optimize algorithms for precise tracking of train position, speed, and the number of train cars. The purpose of this study is to compare different data analysis strategies and the resulting parameter uncertainties. We present data of an ICE 4 train of the Deutsche Bahn AG, which was recorded with a commercial DAS system. We localize the train signal in the data either along the temporal or spatial direction, and a similar velocity standard deviation of less than 5 km/h for a train moving at 160 km/h is found for both analysis methods. The data can be further enhanced by peak finding as well as faster and more flexible neural network algorithms. Then, individual noise peaks due to bogie clusters become visible and individual train cars can be counted. From the time between bogie signals, the velocity can also be determined with a lower standard deviation of 0.8 km/h. The analysis methods presented here will help to establish routines for near real-time train tracking and train integrity analysis.

3.
Sensors (Basel) ; 19(12)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200466

ABSTRACT

Tracking operating trains and identifying illegal intruders are two important and critical issues in subway safety management. One challenge is to find a reliable methodology that would enable these two needs to be addressed with high sensitivity and spatial resolution over a long-distance range. This paper proposes a novel monitoring approach based on distributed vibration, which is suitable for both train tracking and incursion detection. For an actual subway system, ultra-weak fiber Bragg grating (FBG) sensing technology was applied to collect the distributed vibration responses from moving trains and intruders. The monitoring data from the subway operation stage were directly utilized to evaluate the feasibility of the proposed method for tracking trains. Moreover, a field simulation experiment was performed to validate the possibility of detecting human intrusion. The results showed that the diagonal signal pattern in the distributed vibration response can be used to reveal the location and speed of the moving loads (e.g., train and intruders). Other train parameters, such as length and the number of compartments, can also be obtained from the vibration responses through cross-correlation and envelope processing. Experimental results in the time and frequency domains within the selected intrusion range indicated that the proposed method can distinguish designed intrusion cases in terms of strength and mode.

SELECTION OF CITATIONS
SEARCH DETAIL