Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.227
Filter
1.
Aging Cell ; : e14260, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994634

ABSTRACT

Amyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-ß production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown. In this study, we determined MEIS2 was notably elevated in AD models and AD patients. Alterations in the expression of MEIS2 can modulate the levels of BACE1. MEIS2 downregulation improved the learning and memory retention of AD mice and decreased the number of amyloid plaques. MEIS2 binds to the BACE1 promoter, positively regulates BACE1 expression, and accelerates APP amyloid degradation in vitro. Therefore, our findings suggest that MEIS2 might be a critical transcription factor in AD, since it regulates BACE1 expression and accelerates BACE1-mediated APP amyloidogenic cleavage. MEIS2 is a promising early intervention target for AD treatment.

2.
Proc Natl Acad Sci U S A ; 121(29): e2321017121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990947

ABSTRACT

RNA polymerases (RNAPs) carry out the first step in the central dogma of molecular biology by transcribing DNA into RNA. Despite their importance, much about how RNAPs work remains unclear, in part because the small (3.4 Angstrom) and fast (~40 ms/nt) steps during transcription were difficult to resolve. Here, we used high-resolution nanopore tweezers to observe the motion of single Escherichia coli RNAP molecules as it transcribes DNA ~1,000 times improved temporal resolution, resolving single-nucleotide and fractional-nucleotide steps of individual RNAPs at saturating nucleoside triphosphate concentrations. We analyzed RNAP during processive transcription elongation and sequence-dependent pausing at the yrbL elemental pause sequence. Each time RNAP encounters the yrbL elemental pause sequence, it rapidly interconverts between five translocational states, residing predominantly in a half-translocated state. The kinetics and force-dependence of this half-translocated state indicate it is a functional intermediate between pre- and post-translocated states. Using structural and kinetics data, we show that, in the half-translocated and post-translocated states, sequence-specific protein-DNA interaction occurs between RNAP and a guanine base at the downstream end of the transcription bubble (core recognition element). Kinetic data show that this interaction stabilizes the half-translocated and post-translocated states relative to the pre-translocated state. We develop a kinetic model for RNAP at the yrbL pause and discuss this in the context of key structural features.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli , Nanopores , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Transcription, Genetic , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Optical Tweezers , Kinetics , Nucleotides/metabolism
3.
Peptides ; : 171269, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960286

ABSTRACT

bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays in vitro. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that in vitro enhances CREB3L1 activation of target genes.

4.
Genes Dev ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960718

ABSTRACT

As part of the efforts to understand nuclear IκB function in NF-κB-dependent gene expression, we report an X-ray crystal structure of the IκBζ ankyrin repeat domain in complex with the dimerization domain of the NF-κB p50 homodimer. IκBζ possesses an N-terminal α helix that conveys domain folding stability. Affinity and specificity of the complex depend on a small portion of p50 at the nuclear localization signal. The model suggests that only one p50 subunit supports binding with IκBζ, and biochemical experiments confirm that IκBζ associates with DNA-bound NF-κB p50:RelA heterodimers. Comparisons of IκBζ:p50 and p50:κB DNA complex crystallographic models indicate that structural rearrangement is necessary for ternary complex formation of IκBζ and p50 with DNA.

5.
PeerJ ; 12: e17690, 2024.
Article in English | MEDLINE | ID: mdl-39006030

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC) is a deadly type of esophageal cancer. Programmed cell death (PCD) is an important pathway of cellular self-extermination and is closely involved in cancer progression. A detailed study of its mechanism may contribute to ESCC treatment. Methods: We obtained expression profiling data of ESCC patients from public databases and genes related to 12 types of PCD from previous studies. Hub genes in ESCC were screened from PCD-related genes applying differential expression analysis, machine learning analysis, linear support vector machine (SVM), random forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis. In addition, based on the HTFtarget and TargetScan databases, transcription factors (TFs) and miRNAs interacting with the hub genes were selected. The relationship between hub genes and immune cells were analyzed using the CIBERSORT algorithm. Finally, to verify the potential impact of the screened hub genes on ESCC occurrence and development, a series of in vitro cell experiments were conducted. Results: We screened 149 PCD-related DEGs, of which five DEGs (INHBA, LRRK2, HSP90AA1, HSPB8, and EIF2AK2) were identified as the hub genes of ESCC. The area under the curve (AUC) of receiver operating characteristic (ROC) curve of the integrated model developed using the hub genes reached 0.997, showing a noticeably high diagnostic accuracy. The number of TFs and miRNAs regulating hub genes was 105 and 22, respectively. INHBA, HSP90AA1 and EIF2AK2 were overexpressed in cancer tissues and cells of ESCC. Notably, INHBA knockdown suppressed ECSS cell migration and invasion and altered the expression of important apoptotic and survival proteins. Conclusion: This study identified significant molecules with promising accuracy for the diagnosis of ESCC, which may provide a new perspective and experimental basis for ESCC research.


Subject(s)
Apoptosis , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , MicroRNAs , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Gene Expression Profiling , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Movement/genetics , Cell Proliferation/genetics
6.
Front Plant Sci ; 15: 1241515, 2024.
Article in English | MEDLINE | ID: mdl-39006962

ABSTRACT

The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.

7.
Methods Mol Biol ; 2805: 137-151, 2024.
Article in English | MEDLINE | ID: mdl-39008179

ABSTRACT

Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Animals , Embryonic Development/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Embryo, Nonmammalian/metabolism , Drosophila/embryology , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Transcription, Genetic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
8.
Tissue Cell ; 89: 102447, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38991270

ABSTRACT

Activating transcription factor 3 (ATF3) has been identified as a regulator associated with osteoblast differentiation. However, the effects of ATF3 on the osteogenic differentiation and proliferation of human periodontal stem cells (hPDLSCs) in periodontitis have not been reported. With the purpose of establishing an in vitro model of periodontitis, hPDLSCs were challenged with lipopolysaccharide (LPS). The Cell Counting Kit-8 assay was applied to assess cell viability, while reverse transcription-quantitative PCR and western blotting were employed to detect ATF3 expression. Inflammatory release was assessed using ELISA, together with western blotting. Lipid peroxidation was explored using the C11 BODIPY 581/591 probe, biochemical kits, thiobarbituric acid reactive substances (TBARS) assay and DCFH-DA staining. Iron and Fe2+ levels, and the expression levels of ferroptosis-related proteins were measured using corresponding kits and western blotting. Osteogenic differentiative capability was evaluated using alkaline phosphatase staining, Alizarin red staining and western blotting. The expression levels of proteins associated with Nrf2/HO-1 signaling were identified using western blotting. The results indicated that ATF3 expression was upregulated in LPS-induced hPDLSCs. The knockdown of ATF3 alleviated the LPS-induced inflammatory response in hPDLSCs, together with increased levels of TNF-α, IL-6, IL-1ß, Cox-2 and iNOS, and decreased levels of IL-10. ATF3 silencing also led to lower TBARS production rate, and reduced levels of reactive oxygen species, iron, Fe2+, ACSL4 and TFR1, whereas it elevated the levels of SLC7A11 and GPX4. In addition, ATF3 silencing promoted hPDLSC mineralization and cell differentiation, and elevated the levels of OCN2, RUNX2 and BMP2. Additionally, ATF3 depletion upregulated the expression levels of proteins related with Nrf2/HO-1 signaling. The Nrf2 inhibitor ML385 partially counteracted the effects of ATF3 interference on the LPS-challenged inflammatory response, lipid peroxidation, ferroptosis as well as osteogenic differentiative capability in hPDLSCs. In summary, the results revealed that ATF3 silencing suppressed inflammation and ferroptosis, while it improved osteogenic differentiation in LPS-induced hPDLSCs by regulating Nrf2/HO-1 signaling, which may provide promising therapeutic targets for the treatment of periodontitis.

9.
Plant Physiol Biochem ; 214: 108924, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991593

ABSTRACT

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.

10.
J Gynecol Oncol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38991944

ABSTRACT

BACKGROUND: The existence of activating transcription factor 1 (ATF1) could be employed as a clinical marker in the context of cervical cancer development, although its specific mechanism has not been fully clarified. METHODS: To evaluate the presence of ATF1, miR-630, and myelin and lymphocyte protein 2 (MAL2) in cervical malignancies, we conducted quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot assays; further studied the expansion, migration, invasion and epithelial-mesenchymal transition (EMT) of cervical carcinoma cells using colony formation assay, transwell, loss cytometry, Western blot. Chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) were used to verify that ATF1 could directly transcriptionally repress miR-630; dual luciferase reporter assay and RIP assay were employed to confirm that miR-630 targeted to repress MAL2. RESULTS: In cervical cancer cases, elevated ATF1 expression and reduced miR-630 expression were detected, displaying a negative relationship between them. Inhibition of ATF1 hindered the growth, migration, infiltration, and EMT in cervical carcinoma cells, while upregulation of miR-630 mitigated the aggressive characteristics of these cells. ATF1 was found to transcriptionally repress miR-630 by TransmiR and ALGGEN prediction and ChIP validation. MicroRNA modulates gene expression and affects cancer progression, and we discovered that miR-630 regulates cancer progression by targeting and inhibiting MAL2. CONCLUSION: ATF1, which modulates the miR-630/MAL2 pathway, affects the EMT process and cervical carcinoma cell growth and spread. Therefore, ATF1 may serve as a promising marker and treatment target for cervical malignancies intervention.

11.
BMC Genomics ; 25(1): 684, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992576

ABSTRACT

BACKGROUND: Integration of high throughput DNA genotyping and RNA-sequencing data enables the discovery of genomic regions that regulate gene expression, known as expression quantitative trait loci (eQTL). In pigs, efforts to date have been mainly focused on purebred lines for traits with commercial relevance as such growth and meat quality. However, little is known on genetic variants and mechanisms associated with the robustness of an animal, thus its overall health status. Here, the liver, lung, spleen, and muscle transcriptomes of 100 three-way crossbred female finishers were studied, with the aim of identifying novel eQTL regulatory regions and transcription factors (TFs) associated with regulation of porcine metabolism and health-related traits. RESULTS: An expression genome-wide association study with 535,896 genotypes and the expression of 12,680 genes in liver, 13,310 genes in lung, 12,650 genes in spleen, and 12,595 genes in muscle resulted in 4,293, 10,630, 4,533, and 6,871 eQTL regions for each of these tissues, respectively. Although only a small fraction of the eQTLs were annotated as cis-eQTLs, these presented a higher number of polymorphisms per region and significantly stronger associations with their target gene compared to trans-eQTLs. Between 20 and 115 eQTL hotspots were identified across the four tissues. Interestingly, these were all enriched for immune-related biological processes. In spleen, two TFs were identified: ERF and ZNF45, with key roles in regulation of gene expression. CONCLUSIONS: This study provides a comprehensive analysis with more than 26,000 eQTL regions identified that are now publicly available. The genomic regions and their variants were mostly associated with tissue-specific regulatory roles. However, some shared regions provide new insights into the complex regulation of genes and their interactions that are involved with important traits related to metabolism and immunity.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Animals , Swine/genetics , Polymorphism, Single Nucleotide , Female , Transcription Factors/genetics , Transcription Factors/metabolism , Liver/metabolism , Organ Specificity/genetics , Spleen/metabolism , Transcriptome , Gene Expression Regulation , Lung/metabolism , Lung/immunology , Genotype
13.
Front Genet ; 15: 1423213, 2024.
Article in English | MEDLINE | ID: mdl-38993478

ABSTRACT

Lactate, a metabolic byproduct, has gained recognition as a highly influential signaling molecule. Lactylation, an emerging form of post-translational modification derived from lactate, plays a crucial role in numerous cellular processes such as inflammation, embryonic development, tumor proliferation, and metabolism. However, the precise molecular mechanisms through which lactylation governs these biological functions in both physiological and pathological contexts remain elusive. Hence, it is imperative to provide a comprehensive overview of lactylation in order to elucidate its significance in biological processes and establish a foundation for forthcoming investigations. This review aims to succinctly outline the process of lactylation modification and the characterization of protein lactylation across diverse organisms. Additionally, A summary of the regulatory mechanisms of lactylation in cellular processes and specific diseases is presented. Finally, this review concludes by delineating existing research gaps in lactylation and proposing primary directions for future investigations.

14.
Int J Biol Sci ; 20(9): 3544-3556, 2024.
Article in English | MEDLINE | ID: mdl-38993564

ABSTRACT

Hepatic progenitor cells (HPCs) have a bidirectional potential to differentiate into hepatocytes and bile duct epithelial cells and constitute a second barrier to liver regeneration in the adult liver. They are usually located in the Hering duct in the portal vein region where various cells, extracellular matrix, cytokines, and communication signals together constitute the niche of HPCs in homeostasis to maintain cellular plasticity. In various types of liver injury, different cellular signaling streams crosstalk with each other and point to the inducible transcription factor set, including FoxA1/2/3, YB-1, Foxl1, Sox9, HNF4α, HNF1α, and HNF1ß. These transcription factors exert different functions by binding to specific target genes, and their products often interact with each other, with diverse cascades of regulation in different molecular events that are essential for homeostatic regulation, self-renewal, proliferation, and selective differentiation of HPCs. Furthermore, the tumor predisposition of adult HPCs is found to be significantly increased under transcriptional factor dysregulation in transcriptional analysis, and the altered initial commitment of the differentiation pathway of HPCs may be one of the sources of intrahepatic tumors. Related transcription factors such as HNF4α and HNF1 are expected to be future targets for tumor treatment.


Subject(s)
Cell Differentiation , Humans , Animals , Stem Cells/metabolism , Stem Cells/cytology , Liver/metabolism , Liver/cytology , Hepatocytes/metabolism , Hepatocytes/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription, Genetic
15.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000081

ABSTRACT

Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33-TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress.


Subject(s)
Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Spermidine , Trifolium , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Trifolium/genetics , Trifolium/metabolism , Spermidine/metabolism , Spermidine/biosynthesis , Promoter Regions, Genetic , Stress, Physiological , Transcription Factors/metabolism , Transcription Factors/genetics , Signal Transduction , Drought Resistance
16.
World J Exp Med ; 14(2): 92343, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948416

ABSTRACT

Abortive transcript (AT) is a 2-19 nt long non-coding RNA that is produced in the abortive initiation stage. Abortive initiation was found to be closely related to RNA polymerase through in vitro experiments. Therefore, the distribution of AT length and the scale of abortive initiation are correlated to the promoter, discriminator, and transcription initiation sequence, and can be affected by transcription elongation factors. AT plays an important role in the occurrence and development of various diseases. Here we summarize the discovery of AT, the factors responsible for AT formation, the detection methods and biological functions of AT, to provide new clues for finding potential targets in the early diagnosis and treatment of cancers.

18.
Clin Linguist Phon ; : 1-4, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950200

ABSTRACT

This short note outlines changes to three of the diacritics on the extIPA chart and provides an updated version of the entire chart.

19.
New Phytol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952028

ABSTRACT

Plant homeodomain leucine zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START-dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally found that PDF2 acts as a transcriptional regulator of phospholipid- and phosphate (Pi) starvation-related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.

20.
FEBS Lett ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946055

ABSTRACT

The human FoxP transcription factors dimerize via three-dimensional domain swapping, a unique feature among the human Fox family, as result of evolutionary sequence adaptations in the forkhead domain. This is the case for the conserved glycine and proline residues in the wing 1 region, which are absent in FoxP proteins but present in most of the Fox family. In this work, we engineered both glycine (G) and proline-glycine (PG) insertion mutants to evaluate the deletion events in FoxP proteins in their dimerization, stability, flexibility, and DNA-binding ability. We show that the PG insertion only increases protein stability, whereas the single glycine insertion decreases the association rate and protein stability and promotes affinity to the DNA ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...