Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.093
Filter
1.
Article in English | MEDLINE | ID: mdl-39007920

ABSTRACT

Psychiatric disorders such as Bipolar disorder, Anxiety, Major depressive disorder, Schizophrenia, Attention-deficit/hyperactivity disorder, as well as neurological disorders such as Migraine, are linked by the evidence of altered calcium homeostasis. The disturbance of intra-cellular calcium homeostasis disrupts the activity of numerous ion channels including transient receptor potential (TRP) channels. TRP channel families comprise non-selective calcium-permeable channels that have been implicated in variety of physiological processes in the brain, as well as in the pathogenesis of psychiatric disorders. Through a comprehensive review of current research and experimentation, this investigation elucidates the role of TRP channels in psychiatric disorders. Furthermore, this review discusses about the exploration of epigenetics and TRP channels in psychiatric disorders.

2.
World J Gastrointest Oncol ; 16(6): 2862-2864, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994148

ABSTRACT

The study titled "Transient receptor potential-related risk model predicts prognosis of hepatocellular carcinoma patients" is a significant contribution to hepatocellular carcinoma (HCC) research, highlighting the role of transient receptor potential (TRP) family genes in the disease's progression and prognosis. Utilizing data from The Cancer Genome Atlas database, it establishes a new risk assessment model, emphasizing the interaction of TRP genes with tumor proliferation pathways, key metabolic reactions like retinol metabolism, and the tumor immune microenvironment. Notably, the overexpression of the TRPC1 gene in HCC correlates with poorer patient survival outcomes, suggesting its potential as a prognostic biomarker and a target for personalized therapy, particularly in strategies combining immunotherapy and anti-TRP agents.

3.
Am J Transl Res ; 16(6): 2278-2289, 2024.
Article in English | MEDLINE | ID: mdl-39006266

ABSTRACT

OBJECTIVES: Endothelial progenitor cells (EPCs) play a crucial role in acquired angiogenesis and endothelial injury repair. Transient receptor potential canonical channel 4 (TRPC4), a key component of store-operated calcium channels, is essential for EPC function. While the role of TRPCs has been clarified in vascular diseases, the relationship between TRPC4 and EPC function, along with the underlying molecular mechanisms, remains unclear and requires further elucidation. METHODS: EPCs were isolated from canine bone marrow and identified by morphology and flow cytometry. TRPC4 was transfected into EPCs using lentivirus or negative control, and its expression was assessed using real-time polymerase chain reaction (RT-PCR). Proliferation, migration, and tube formation were evaluated using Cell Counting Kit-8 (CCK-8), Transwell, and Matrigel assays, respectively. Levels of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: TRPC4 mRNA expression was significantly reduced in TRPC4-short hairpin RNA (shRNA) transfected EPCs compared to the normal control (NC)-shRNA groups. Migration and tube formation were significantly decreased after TRPC4 silencing, while proliferation showed no difference. Additionally, levels of SDF-1 and VEGF in EPCs were markedly reduced following TRPC4 silencing. CONCLUSION: TRPC4 plays a crucial role in regulating angiogenesis in EPCs. Silencing of TRPC4 can lead to decreased angiogenesis by inhibiting VEGF and SDF-1 expression, suggesting that TRPC4 knockdown might be a novel therapeutic strategy for vascular diseases.

4.
J Biol Chem ; : 107574, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009345

ABSTRACT

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as homotetramer. We investigated whether three disease-associated mutations (F629S, C632R or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wildtype (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed, when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15 %) and R638C (∼30 %). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.

6.
Acta Biomater ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960111

ABSTRACT

Photothermal therapy (PTT) has attracted attention as a highly effective non-invasive treatment method. However, the high localized temperatures (>50 °C) required for its treatment will inevitably cause damage to the surrounding normal tissues. Therefore, it is important to develop novel and effective strategies to achieve mild photothermal therapy (mPTT). The overexpression of heat shock proteins (HSPs), a widespread heat stress protein, leads to the generation of heat resistance in cancer cells, which seriously affects the therapeutic effect. Thus, inhibiting the expression of HSPs to reduce the heat resistance of tumor cells is expected to enhance the therapeutic effect of mPTT. Here, we successfully synthesized a fluorescent probe bonded with an amphiphilic polypeptide to a cyanine dye and achieved physical encapsulation of the blocker SB705498 through a self-assembly process. SB705498 promotes transient receptor potential vanilloid member 1 (TRPV1) channel blockade that can inhibit the translocation of the heat shock transcription factor 1 (HSF 1) by blocking the influx of calcium and thus affecting the expression of HSPs, which has the potential to enhance the thermotherapy of cancer under mild conditions. In addition, the nanoparticles enabled NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Therefore, this study provides a new strategy for realizing precise mPTT(<45 °C) guided by NIR-II imaging. STATEMENT OF SIGNIFICANCE: Inhibition of overexpression of heat shock proteins (HSPs) in cancer photothermal therapy (PTT) is expected to enhance the therapeutic effect of mild photothermal therapy (mPTT). In this study, we synthesized a fluorescent probe bonded to cyanine dyes with amphiphilic polypeptides and physically wrapped the blocker SB705498 through a self-assembly process. As a transient receptor potential vanillin 1 (TRPV1) channel blocker, SB705498 inhibits heat shock transcription factor 1 (HSF1) translocation by blocking calcium ion influx, thereby improving mPTT efficacy by inhibiting the expression of HSPs. The nanoparticles also enable NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Thus, this study provides a new strategy for NIR-II mPTT.

7.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000357

ABSTRACT

Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors. We considered the possibility that TRPC1 and TRPC5 channels might be associated with both the high calcium levels and the delay in inner retinal degeneration. TRPC1 is known to mediate protective effects in neurodegenerative processes while TRPC5 promotes cell death. In order to comprehend the implications of these channels in RP, the co-localization and subsequent physical interaction between TRPC1 and TRPC5 in healthy retina (Sprague-Dawley rats) and degenerating (P23H-1, a model of RP) retina were detected by immunofluorescence and proximity ligation assays. There was an overlapping signal in the innermost retina of all animals where TRPC1 and TRPC5 physically interacted. This interaction increased significantly as photoreceptor loss progressed. Both channels function as TRPC1/5 heteromers in the healthy and damaged retina, with a marked function of TRPC1 in response to retinal degenerative mechanisms. Furthermore, our findings support that TRPC5 channels also function in partnership with STIM1 in Müller and retinal ganglion cells. These results suggest that an increase in TRPC1/5 heteromers may contribute to the slowing of the degeneration of the inner retina during the outer retinal degeneration.


Subject(s)
Rats, Sprague-Dawley , Retinal Degeneration , TRPC Cation Channels , Animals , TRPC Cation Channels/metabolism , Rats , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retina/metabolism , Retina/pathology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Retinitis Pigmentosa/genetics , Disease Models, Animal
8.
Ren Fail ; 46(2): 2376929, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39022902

ABSTRACT

The transient receptor potential canonical 6 (TRPC6) channel, a nonselective cation channel that allows the passage of Ca2+, plays an important role in renal diseases. TRPC6 is activated by Ca2+ influx, oxidative stress, and mechanical stress. Studies have shown that in addition to glomerular diseases, TRPC6 can contribute to renal tubular disorders, such as acute kidney injury, renal interstitial fibrosis, and renal cell carcinoma (RCC). However, the tubule-specific physiological functions of TRPC6 have not yet been elucidated. Its pathophysiological role in ischemia/reperfusion (I/R) injury is debatable. Thus, TRPC6 may have dual roles in I/R injury. TRPC6 induces renal fibrosis and immune cell infiltration in a unilateral ureteral obstruction (UUO) mouse model. Additionally, TRPC6 overexpression may modify G2 phase transition, thus altering the DNA damage checkpoint, which can cause genomic instability and RCC tumorigenesis and can control the proliferation of RCC cells. This review highlights the importance of TRPC6 in various conditions of the renal tubular system. To better understand certain renal disorders and ultimately identify new therapeutic targets to improve patient care, the pathophysiology of TRPC6 must be clarified.


Subject(s)
TRPC6 Cation Channel , Humans , TRPC6 Cation Channel/metabolism , TRPC6 Cation Channel/genetics , Animals , Kidney Tubules/pathology , Kidney Tubules/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Reperfusion Injury/metabolism , Fibrosis , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Mice , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Oxidative Stress , Kidney Diseases/metabolism , Kidney Diseases/etiology
10.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892000

ABSTRACT

Paclitaxel, a microtubule-stabilizing chemotherapy drug, can cause severe paclitaxel-induced peripheral neuropathic pain (PIPNP). The roles of transient receptor potential (TRP) ion channel vanilloid 1 (TRPV1, a nociceptor and heat sensor) and melastatin 8 (TRPM8, a cold sensor) in PIPNP remain controversial. In this study, Western blotting, immunofluorescence staining, and calcium imaging revealed that the expression and functional activity of TRPV1 were upregulated in rat dorsal root ganglion (DRG) neurons in PIPNP. Behavioral assessments using the von Frey and brush tests demonstrated that mechanical hyperalgesia in PIPNP was significantly inhibited by intraperitoneal or intrathecal administration of the TRPV1 antagonist capsazepine, indicating that TRPV1 played a key role in PIPNP. Conversely, the expression of TRPM8 protein decreased and its channel activity was reduced in DRG neurons. Furthermore, activation of TRPM8 via topical application of menthol or intrathecal injection of WS-12 attenuated the mechanical pain. Mechanistically, the TRPV1 activity triggered by capsaicin (a TRPV1 agonist) was reduced after menthol application in cultured DRG neurons, especially in the paclitaxel-treated group. These findings showed that upregulation of TRPV1 and inhibition of TRPM8 are involved in the generation of PIPNP, and they suggested that inhibition of TRPV1 function in DRG neurons via activation of TRPM8 might underlie the analgesic effects of menthol.


Subject(s)
Ganglia, Spinal , Neuralgia , Paclitaxel , Rats, Sprague-Dawley , TRPM Cation Channels , TRPV Cation Channels , Animals , Paclitaxel/adverse effects , Paclitaxel/pharmacology , TRPM Cation Channels/metabolism , TRPV Cation Channels/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Rats , Neuralgia/metabolism , Neuralgia/drug therapy , Neuralgia/chemically induced , Male , Hyperalgesia/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Capsaicin/pharmacology , Capsaicin/analogs & derivatives , Neurons/metabolism , Neurons/drug effects
11.
Biochem Biophys Res Commun ; 723: 150187, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38850809

ABSTRACT

This study investigated the effects of far-infrared (FIR) irradiation on low-density lipoprotein cholesterol (LDL-C) uptake by human hepatocellular carcinoma G2 (HepG2) cells via the regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). FIR irradiation for 30 min significantly decreased PCSK9 expression (p < 0.01) in HepG2 cells. FIR irradiation substantially increased the low-density lipoprotein receptor (p < 0.0001) and LDL-C uptake (p < 0.01). Activation of transient receptor potential vanilloid (TRPV) channels mimicked the effects of FIR irradiation, significantly decreasing the protein expression of PCSK9 (p < 0.05). Conversely, inhibition of TRP channels using ruthenium red reversed the reduction in PCSK9 protein expression following FIR irradiation (p < 0.01). The specific activation of TRPV4 using 4α-PDD mimicked the effect of FIR irradiation (p < 0.01), whereas PCSK9 reduction by FIR irradiation was significantly reversed by the inhibition of TRPV4 using RN1734 (p < 0.05). These findings implied that FIR irradiation emitted from a ceramic lamp specifically increased TRPV4 activity. These findings provide insights into a novel therapeutic approach using FIR irradiation for LDL-C regulation and its implications for cardiovascular health.


Subject(s)
Cholesterol, LDL , Down-Regulation , Infrared Rays , Proprotein Convertase 9 , TRPV Cation Channels , Humans , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Hep G2 Cells , TRPV Cation Channels/metabolism , Cholesterol, LDL/metabolism , Down-Regulation/radiation effects
12.
Heliyon ; 10(11): e31871, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868032

ABSTRACT

Background: Transient receptor potential melastatin 4 (TRPM4) affects immune responses by regulating calcium homeostasis, but its role in calcific aortic valve inflammation remains unclear. This study aimed to assess the expression and function of TRPM4 in patients with or without calcific aortic valve disease (CAVD). Methods: The mRNA and protein expression levels of TRPM4 and related factors in calcified and noncalcified tissues were measured using qRT-PCR and Western blot. The proteins interacting with TRPM4 were confirmed by RNA pull-down and RNA immunoprecipitation assays. Dual-Luciferase Reporter Assay was performed to confirm the m6A site of TRPM4. Results: The mRNA expression levels of TRPM4, TLR4, IL-6, MCP-1, TNF-α, and NF-κB p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues, and TRPM4 was significantly positively correlated with inflammation-related factors. The protein expression level of TRPM4, TLR4 and NF-κB p65 were significantly higher in calcified aortic valve tissues than in noncalcified tissues. N6-methyladenosine (m6A) modification of TRPM4 mRNA by METTL3-YTHDF1 up-regulated its expression in CAVD. And TRPM4 promoted the level of inflammation via activation of the JNK-MAPK signaling pathway, after knockdown TRPM4, the production of proinflammatory cytokines was significantly suppressed. Conclusion: The results indicate the pivotal role of TRPM4 in CAVD and highlight METTL3-mediated m6A modification of TRPM4 in promoting inflammation through JNK-MAPK signaling pathway. This work provides potential therapeutic strategy to impede inflammation in CAVD.

13.
Cancer Rep (Hoboken) ; 7(6): e2108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837874

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PAAD), a member of highly lethal malignant tumors, has a poor outcome and extremely poor prognosis. The transient receptor potential (TRP) superfamily, a group of nonselective cation channels, is capable of influencing cellular functions by regulating calcium homeostasis. In addition, it has been shown that TRP channels can also affect various cellular phenotypes by regulating gene transcription levels and are involved in the development of a variety of malignant tumors. AIMS: In order to find new therapeutic targets and biomarkers to improve the clinical prognosis of pancreatic cancer, we performed genetic and immunological characterization of TRP channels in PAAD, as well as related functional and prognostic analyses. METHODS AND RESULTS: We investigated the expression, genetic alterations, methylation levels, and immune infiltration levels of TRP channels in PAAD, and further also analyzed the function of TRP channels in PAAD and their prognostic value for PAAD patients. Our results suggest that TRPM8 may contribute to tumor proliferation by controlling the PI3K-AKT-mTOR signaling pathway in PAAD. CONCLUSION: After careful evaluation of the accumulated data, we concluded that TRPM8 has potential as a prognostic indicator and prospective therapeutic target in PAAD.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , Cell Proliferation , Pancreatic Neoplasms , TRPM Cation Channels , Humans , TRPM Cation Channels/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Cell Proliferation/genetics , Prognosis , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic , Signal Transduction , Aged , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , DNA Methylation
14.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928459

ABSTRACT

Wound healing involves physical, chemical and immunological processes. Transient receptor potential (TRP) and other ion channels are implicated in epidermal re-epithelization. Ion movement across ion channels can induce transmembrane potential that leads to transepithelial potential (TEP) changes. TEP is present in epidermis surrounding the lesion decreases and induces an endogenous direct current generating an epithelial electric field (EF) that could be implicated in wound re-epithelialization. TRP channels are involved in the activation of immune cells during mainly the inflammatory phase of wound healing. The aim of the study was to review the mechanisms of ion channel involvement in wound healing in in vivo experiments in murine (mice, rats) and how can this process be influenced. This review used the latest results published in scientific journals over the last year and this year to date (1 January 2023-31 December 3000) in order to include the in-press articles. Some types of TRP channels, such as TRPV1, TRPV3 and TRPA1, are expressed in immune cells and can be activated by inflammatory mediators. The most beneficial effects in wound healing are produced using agonists of TRPV1, TRPV4 and TRPA1 channels or by inhibiting with antagonists, antisense oligonucleotides or knocking down TRPV3 and TRPM8 channels.


Subject(s)
Transient Receptor Potential Channels , Wound Healing , Animals , Mice , Transient Receptor Potential Channels/metabolism , TRPV Cation Channels/metabolism , Rats
15.
Expert Opin Ther Pat ; 34(5): 315-332, 2024 May.
Article in English | MEDLINE | ID: mdl-38847054

ABSTRACT

INTRODUCTION: TRPA1 is a nonselective calcium channel, a member of the transient receptor potential (TRP) superfamily, also referred to as the 'irritant' receptor, being activated by pungent and noxious exogenous chemicals as well as by endogenous algogenic stimuli, to elicit pain, itching, and inflammatory conditions. For this reason, it is considered an attractive therapeutic target to treat a wide range of diseases including acute and chronic pain, itching, and inflammatory airway diseases. AREAS COVERED: The present review covers patents on TRPA1 antagonists disclosed from 2020 to present, falling in the following main classes: i) novel therapeutic applications for known or already disclosed antagonists, ii) identification and characterization of TRPA1 antagonists from natural sources, and iii) synthesis and evaluation of novel compounds. EXPERT OPINION: Despite the limited number of TRPA1 antagonists in clinical trials, there is an ever-growing interest on this receptor-channel as therapeutic target, mainly due to the relevant outcomes from basic research, which unveiled novel physio-pathological mechanisms where TRPA1 is believed to play a pivotal role, for example the Alzheimer's disease or ocular diseases, expanding the panel of potential therapeutic applications for TRPA1 modulators.


Subject(s)
Patents as Topic , TRPA1 Cation Channel , Humans , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/metabolism , Animals , Pain/drug therapy , Pain/physiopathology , Inflammation/drug therapy , Inflammation/physiopathology , Drug Development
16.
Zhen Ci Yan Jiu ; 49(6): 558-565, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897799

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Neiguan"(PC6) on cardiac function, cardiac morphology and transient receptor potential channel (TRPC) protein expressions in myocardial tissue of mice with myocardial hypertrophy, so as to explore its mechanisms underlying improvement of myocardial hypertrophy. METHODS: Forty-five male C57BL/6 mice were randomly divided into control, model and EA groups (15 mice/group). The myocardial hypertrophy model was established by subcutaneous injection of isoproterenol hydrochloride (15 mg·kg-1·d-1) for 14 days. The mice of the control group received subcutaneous injection of same amount of normal saline. The mice of the EA group received EA stimulation (frequency of 2 Hz, intensity of 1 mA) of bilateral PC6 for 20 min each time, once a day for 14 consecutive days. After the intervention, the body weight, tibia length and heart weight were measured. The left ventricular ejection fraction (EF), fractional shortening index (FS), left ventricular end-systolic volume (LVEV), left ventricular end-systolic internal diameter (LVID) and left ventricular posterior wall thickness (LVPW) were measured by using echocardiography for evaluating the cardiac function. The mean number and surface area of myocardial cells was detected by wheat germ agglutinin (WGA) staining, and changes of the cardiac morphology were observed under light microscopy after HE staining. The expression levels of TRPC1, TRPC3, TRPC4 and TRPC6 (TRPC1/3/4/6) in the myocardial tissue were detected by real-time quantitative PCR (qPCR) and Western blot, separately. RESULTS: Compared with the control group, the heart-body weight ratio(P<0.05) and heart-weight-to-tibia-length ratio (P<0.01), LVEV and LVID levels, the relative surface area, left ventricular area ratio, and the expression levels of cardiac TRPC1/3/4/6 were significantly increased (P<0.01, P<0.05), while the EF, FS, LVPW, number of cardiomyocytes, and the left ventricular posterior wall ratio were obviously decreased (P<0.01, P<0.05) in the model group. In comparison with the model group, the heart/body weight ratio, heart-weight-to-tibia-length ratio, LVEV and LVID levels, relative surface area, left ventricular area ratio, and the expression levels of cardiac TRPC1/3/4/6 were significantly decreased (P<0.01, P<0.05), while the EF, FS, LVPW, number of cardiomyocytes and left ventricular posterior wall ratio were significantly increased (P<0.01, P<0.05) in the EA group. H.E. staining showed disordered arrangement of cardiomyocytes and obvious myocardial interstitial inflammatory cell infiltration in the model group, and evident reduction of degree of cardiac fibrosis and interstitial edema in the EA group. CONCLUSIONS: EA of PC6 can improve the cardiac function and cardiac morphology in mice with myocardial hypertrophy, which may be related to its functions in down-regulating the expression of transient receptor potential channels.


Subject(s)
Electroacupuncture , Mice, Inbred C57BL , Myocardium , Animals , Mice , Male , Humans , Myocardium/metabolism , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Cardiomegaly/metabolism , Cardiomegaly/therapy , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Acupuncture Points , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics
17.
Front Psychiatry ; 15: 1356563, 2024.
Article in English | MEDLINE | ID: mdl-38903645

ABSTRACT

Introduction: Post-traumatic stress disorder (PTSD) is a psychiatric disorder triggered by exposure to a life-threatening or sexually violent traumatic event, and is characterized by symptoms involving intrusive re-experiencing, persistent avoidance of associated stimuli, emotional and cognitive disturbances, and hyperarousal for long periods after the trauma has occurred. These debilitating symptoms induce occupational and social impairments that contribute to a significant clinical burden for PTSD patients, and substantial socioeconomic costs, reaching approximately $20,000 dollars per individual with PTSD each year in the US. Despite increased translational research focus in the field of PTSD, the development of novel, effective pharmacotherapies for its treatment remains an important unmet clinical need. Observations: In this review, we summarize the evidence implicating dysfunctional activity of the amygdala in the pathophysiology of PTSD. We identify the transient receptor potential canonical (TRPC) ion channels as promising drug targets given their distribution in the amygdala, and evidence from animal studies demonstrating their role in fear response modulation. We discuss the evidence-based pharmacotherapy and psychotherapy treatment approaches for PTSD. Discussion: In view of the prevalence and economic burden associated with PTSD, further investigation is warranted into novel treatment approaches based on our knowledge of the involvement of brain circuitry and the role of the amygdala in PTSD, as well as the potential added value of combined pharmacotherapy and psychotherapy to better manage PTSD symptoms.

18.
Drug Discov Today ; 29(7): 104051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838960

ABSTRACT

Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.


Subject(s)
Muscle, Smooth, Vascular , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , Animals , Muscle, Smooth, Vascular/metabolism , Endothelial Cells/metabolism , Calcium Signaling/physiology , Myocytes, Smooth Muscle/metabolism
19.
Brain Res Bull ; 215: 111007, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852650

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) is a severe mental disorder, but its pathogenesis is still unknown, and its clinical treatment effect is very limited. Transient receptor potential vanilloid 1 (TRPV1) channel and the Endocannabinoid System (ECS)have been confirmed to be involved in the pathogenesis of SCZ, although their actions have not been fully clarified yet. The objective is to examine TRPV1 and ECS expression in the blood of schizophrenia patients and investigate their correlation with disease severity. METHODS: This is a cross-sectional investigation. Peripheral blood samples were gathered from normal controls (NC, n=37), as well as individuals with schizophrenia, including first episode (n=30) and recurrent (n=30) cases. We employed western blot and ELISA techniques to quantify TRPV1, cannabinoid receptors 1(CB1), anandamide (AEA), and 2-arachidonoylglycerol (2-AG), and assess the severity of the patient's symptoms by means of the PANSS scale. RESULTS: Compared to NC, TRPV1 levels showed a noticeable decrease in both first episode schizophrenia (f-SCZ group) and recurrent schizophrenia (r-SCZ group) subjects. Additionally, CB1 levels appeared increased in f-SCZ group. Furthermore, 2-AG levels were found to be elevated in both f-SCZ group and r-SCZ group compared to NC, whereas AEA levels were decreased in f-SCZ group but increased in r-SCZ group. Moreover, among schizophrenia patients, TRPV1 demonstrated a negative correlation with negative symptoms. Within r-SCZ subjects, CB1 displayed a negative correlation with relapse number, while 2-AG showed a correlation in the opposite direction. CONCLUSIONS: This study provides initial clinical evidence of changed TRPV1 expression in schizophrenia, potentially linked to negative symptoms. These results suggest a possible dysfunction of TRPV1 and the endocannabinoid system (ECS), which might offer new avenues for medical interventions.

20.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Article in English | MEDLINE | ID: mdl-38945884

ABSTRACT

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Subject(s)
Adipose Tissue, Brown , Brain-Derived Neurotrophic Factor , Diet, High-Fat , Iridoid Glucosides , Iridoids , Norepinephrine , Obesity , Rats, Sprague-Dawley , TRPA1 Cation Channel , Uncoupling Protein 1 , Animals , Male , Uncoupling Protein 1/metabolism , Iridoid Glucosides/pharmacology , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Iridoids/pharmacology , Norepinephrine/metabolism , TRPA1 Cation Channel/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats , Anti-Obesity Agents/pharmacology , Walking , Weight Gain/drug effects , Physical Conditioning, Animal , TRPV Cation Channels
SELECTION OF CITATIONS
SEARCH DETAIL
...