Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
MedComm (2020) ; 5(4): e515, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38525109

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease associated with B-cell hyperactivity. Telitacicept is a transmembrane activator, calcium modulator, and cyclophilin ligand interactor-Fc fusion protein, which can neutralize both B-cell lymphocyte stimulator and a proliferation-inducing ligand. Patients with active SLE who received telitacicept were prospectively followed at month 1, 3, 6, 9, and 12 after telitacicept initiation. Thirty-seven participants were involved and followed for 6.00 [3.00, 6.00] months. SRI-4 rate at month 6 was 44.7%. The median dosage of prednisone was decreased by 43.8% (from 10 to 5.62 mg/d) at month 6. The anti-dsDNA level was significantly decreased, while complement levels were significantly increased at month 6 from baseline. Continuously significant reductions in serum immunoglobin (Ig)G IgA, and IgM levels were also observed. Patients experienced significant decreases in the numbers of total and naive B cells, whereas memory B cells and T cell populations did not change. The number of NK cells was significantly increased during the follow-up. At month 6, 58.3% (14 out of 24) patients experienced improved fatigue accessed by FACIT-Fatigue score exceeding the minimum clinically important difference of 4. Most adverse events were mild, but one each case of severe hypogammaglobulinemia, psychosis with suicidal behavior, and B-cell lymphoma were occurred. In our first prospective real-world study, telitacicept treatment led to a significant clinical and laboratory improvement of disease activity, as well as fatigue amelioration in patients with SLE. Safety profile was favorable overall, but more studies are greatly needed.

2.
Clin Immunol ; 253: 109689, 2023 08.
Article in English | MEDLINE | ID: mdl-37422057

ABSTRACT

While many of the genes and molecular pathways in the germinal center B cell response which initiate protective antibody production are known, the contributions of individual molecular players in terminal B cell differentiation remain unclear. We have previously investigated how mutations in TACI gene, noted in about 10% of patients with common variable immunodeficiency, impair B cell differentiation and often, lead to lymphoid hyperplasia and autoimmunity. Unlike mouse B cells, human B cells express TACI-L (Long) and TACI-S (Short) isoforms, but only TACI-S promotes terminal B cell differentiation into plasma cells. Here we show that the expression of intracellular TACI-S increases with B cell activation, and colocalizes with BCMA and their ligand, APRIL. We show that the loss of APRIL impairs isotype class switch and leads to distinct metabolic and transcriptional changes. Our studies suggest that intracellular TACI-S and APRIL along with BCMA direct long-term PC differentiation and survival.


Subject(s)
B-Cell Maturation Antigen , Transmembrane Activator and CAML Interactor Protein , Mice , Animals , Humans , Transmembrane Activator and CAML Interactor Protein/genetics , B-Lymphocytes , Plasma Cells , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , B-Cell Activating Factor
3.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 903-914, 2022 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-35355463

ABSTRACT

In recent decades, the treatment of autoimmune diseases has moved from the use of hormones and conventional immunosuppressive drugs to biological agents. B cell proliferation and maturation play crucial roles in the development of autoimmune diseases. The tumor necrosis factor superfamily ligand B cell activating factor (BAFF) and its receptor mediate B cell survival through regulating signaling pathways. Therefore, BAFF and its receptors are important therapeutic targets for the treatment of autoimmune diseases. This review describes the mechanism of BAFF and its receptor in the human body system and introduces the latest views on how over-activation of BAFF pathway promotes the development of autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, and rheumatoid arthritis. In connection to the treatment of the above three diseases, this review discusses the clinical trials and application status of three BAFF-targeting antibody drugs, including Belimumab, Tabalumab and Atacicept. Finally, this review proposes new strategies that targeting the BAFF pathway to provide a new treatment for autoimmune diseases.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Autoimmune Diseases/drug therapy , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/therapeutic use , B-Lymphocytes , Humans , Interleukin-4 , Lupus Erythematosus, Systemic/drug therapy
4.
Vaccine ; 40(8): 1116-1127, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35086743

ABSTRACT

We previously demonstrated that the dendritic cell (DC)-targeting nasal double DNA adjuvant system, which consists of a DNA plasmid expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotide 1826 (CpG ODN), elicits specific immune responses to various antigens in the mucosal and systemic compartments. Here, we investigated, using phosphorylcholine (PC)-conjugated keyhole limpet hemocyanin (PC-KLH) as an antigen, whether the nasal double DNA adjuvant system induces protective immunity to atherosclerosis in apolipoprotein E-deficient (ApoE KO) mice. Further, we assessed the molecular and cellular mechanisms in the induction of anti-PC-specific immune responses. Nasal immunization with PC-KLH plus pFL and CpG ODN enhanced induction of PC-specific IgM in plasma, peritoneal fluids, and nasal washes when compared with mice administered PC-KLH alone. Of importance, these antibodies exhibited highly specific binding to the PC molecule, and dose-dependent binding to anti-T15 idiotype (AB1-2). Twelve weeks after the last immunization, the nasal double DNA adjuvant system with PC-KLH resulted in a reduction of atherogenesis in the aortic arch of ApoE KO mice. Therefore, we next assessed immunocytological mechanism to induce these antibodies. The nasal double DNA adjuvant system with PC-KLH resulted not only in significantly increased frequencies of CD11c+ DCs in the spleen, peritoneal cavity (PEC), and nasopharyngeal-associated lymphoid tissues (NALT), but also significantly increased expression of a proliferation-inducing ligand and B-cell-activating factor by CD11c+ DCs. In addition, the double DNA adjuvant system induced significantly increased numbers of B-1 B cells in the spleen, PEC, and NALT, and increased expression of transmembrane activator and calcium modulator and cyclophilin ligand interactor on CD5+ B220+ (B-1a) B cells. These findings demonstrated that the nasal double DNA adjuvant system with PC-KLH resulted in the induction of T15-like antibodies in the mucosal and systemic lymphoid tissues through interaction between DCs and B-1a B cells, and inhibited the progression of atherogenesis.


Subject(s)
Adjuvants, Immunologic , Hemocyanins , Adjuvants, Immunologic/genetics , Animals , Cell Communication , DNA , Dendritic Cells , Immunoglobulin M , Mice , Mice, Inbred BALB C
5.
Chinese Journal of Biotechnology ; (12): 903-914, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-927753

ABSTRACT

In recent decades, the treatment of autoimmune diseases has moved from the use of hormones and conventional immunosuppressive drugs to biological agents. B cell proliferation and maturation play crucial roles in the development of autoimmune diseases. The tumor necrosis factor superfamily ligand B cell activating factor (BAFF) and its receptor mediate B cell survival through regulating signaling pathways. Therefore, BAFF and its receptors are important therapeutic targets for the treatment of autoimmune diseases. This review describes the mechanism of BAFF and its receptor in the human body system and introduces the latest views on how over-activation of BAFF pathway promotes the development of autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, and rheumatoid arthritis. In connection to the treatment of the above three diseases, this review discusses the clinical trials and application status of three BAFF-targeting antibody drugs, including Belimumab, Tabalumab and Atacicept. Finally, this review proposes new strategies that targeting the BAFF pathway to provide a new treatment for autoimmune diseases.


Subject(s)
Humans , Autoimmune Diseases/drug therapy , B-Cell Activating Factor/therapeutic use , B-Lymphocytes , Interleukin-4 , Lupus Erythematosus, Systemic/drug therapy
6.
Oncol Lett ; 22(4): 728, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34429768

ABSTRACT

Lung cancer represents the most common type of human malignancy and is the main cause of cancer-associated mortality worldwide. To improve the effectiveness of treatment strategies, a better understanding of the mechanisms of cancer progression and invasiveness is required. Recently, B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), two relatively newly described cytokines belonging to the tumor necrosis factor superfamily, have been shown to play a role in cancer progression. However, at present, the effects of both cytokines on lung cancer cells remain unclear. The present study aimed therefore to understand the direct effects of BAFF and APRIL on non-small cell lung cancer (NSCLC) progression. To do so, reverse transcription quantitative PCR and western blotting were used to evaluate whether A549 and H2030 NSCLC cells express receptors for both BAFF and APRIL. The results demonstrated that both investigated cell lines expressed BAFF-R (receptor specific to BAFF only) and transmembrane activator and CAML interactor (TACI; shared receptor for both cytokines). In addition, functional experiments were performed to determine the effects of BAFF and APRIL stimulation on cancer cell viability. The results demonstrated no direct effects of BAFF and APRIL on NSCLC cell proliferation and invasiveness. In summary, the present study demonstrated that NSCLC cells possess the ability to respond directly to both BAFF and APRIL. However, activation of BAFF-R and TACI signaling in cancer cells did not increase the proliferative capacity and invasiveness. Further investigation is thus required to better understand the role of BAFF and APRIL on the progression of NSCLC.

7.
JACC Basic Transl Sci ; 6(6): 546-563, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34222726

ABSTRACT

Because atherosclerotic cardiovascular disease is a leading cause of death worldwide, understanding inflammatory processes underpinning its pathology is critical. B cells have been implicated as a key immune cell type in regulating atherosclerosis. B-cell effects, mediated by antibodies and cytokines, are subset specific. In this review, we focus on elaborating mechanisms underlying subtype-specific roles of B cells in atherosclerosis and discuss available human data implicating B cells in atherosclerosis. We further discuss potential B cell-linked therapeutic approaches, including immunization and B cell-targeted biologics. Given recent evidence strongly supporting a role for B cells in human atherosclerosis and the expansion of immunomodulatory agents that affect B-cell biology in clinical use and clinical trials for other disorders, it is important that the cardiovascular field be cognizant of potential beneficial or untoward effects of modulating B-cell activity on atherosclerosis.

8.
Cells ; 9(12)2020 11 25.
Article in English | MEDLINE | ID: mdl-33255854

ABSTRACT

The MRZ reaction (MRZR) comprises the three antibody indices (AIs) against measles, rubella, and varicella zoster virus, reflecting an intrathecal polyspecific B cell response highly specific for multiple sclerosis (MS). Thus, MRZR can be used to confirm a diagnosis of primary progressive MS (PPMS) but its pathophysiological and wider clinical relevance is unclear. This study aimed to investigate whether PPMS patients with a positive MRZR (MRZR+) differ from those with a negative MRZR (MRZR-) according to cerebrospinal fluid (CSF) biomarkers of B cell activity, neuroaxonal damage or glial activity, and clinical features. (1) Methods: In a multicenter PPMS cohort (n = 81) with known MRZR status, we measured B cell-activating factor (BAFF), chemokine CXC ligand 13 (CXCL-13), soluble B cell maturation antigen (sBCMA), soluble transmembrane activator and CAML interactor (sTACI), and chitinase-3-like protein 1 (CHI3L1) in the CSF with enzyme-linked immunosorbent assays (ELISAs). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were detected in serum and CSF using single molecule array (SIMOA) technology. (2) Results: MRZR+ patients (45.7% of all PPMS patients) revealed higher levels of NfL in CSF compared to MRZR- patients (54.3%). There were positive correlations between each of sBCMA, sTACI, and intrathecal immunoglobin G (IgG) synthesis. Additionally, NfL concentrations in serum positively correlated with those in CSF and those of GFAP in serum. However, MRZR+ and MRZR- patients did not differ concerning clinical features (e.g., age, disease duration, Expanded Disability Status Scale (EDSS) at diagnosis and follow-up); CSF routine parameters; CSF concentrations of BAFF, CXCL-13, sBCMA, sTACI, CHI3L1, and GFAP; or serum concentrations of GFAP and NfL. (3) Conclusions: In PPMS patients, MRZR positivity might indicate a more pronounced axonal damage. Higher levels of the soluble B cell receptors BCMA and transmembrane activator and CAML interactor (TACI) in CSF are associated with a stronger intrathecal IgG synthesis in PPMS.


Subject(s)
Biomarkers/metabolism , Cerebrospinal Fluid/metabolism , Multiple Sclerosis/metabolism , Adolescent , Adult , Axons/metabolism , B-Lymphocytes/metabolism , Chitinase-3-Like Protein 1/metabolism , Cohort Studies , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Immunoglobulin G/metabolism , Male , Middle Aged , Transmembrane Activator and CAML Interactor Protein/metabolism , Young Adult
9.
Clin Transl Immunology ; 8(4): e01047, 2019.
Article in English | MEDLINE | ID: mdl-31024730

ABSTRACT

OBJECTIVES: To determine the presence and clinical associations of the soluble receptors of B cell-activating factor from the tumor necrosis factor family (BAFF) in serum of patients with systemic lupus erythematosus (SLE). METHODS: Serum BAFF and soluble BAFF receptor (sBAFF-R) were quantified using ELISA, and soluble B cell maturation antigen (sBCMA) and transmembrane activator and cyclophilin ligand interactor (sTACI) by Luminex, in 87 SLE patients and 17 healthy controls (HC). Disease activity and organ damage were assessed using SLE Disease Activity Index 2000 (SLEDAI-2K) and Systemic Lupus International Collaborating Clinics (SLICC) SLE Damage Index (SDI), respectively. RESULTS: BAFF and all receptors were detectable in all serum samples. Serum sBCMA and sTACI, but not sBAFF-R, were significantly higher in SLE than in HC. Serum BAFF was also increased in SLE, but this association was attenuated after adjusting for age and ethnicity. Increased serum BAFF was associated with flare and organ damage. Increased serum sBCMA was associated with the presence of anti-dsDNA, but not with overall or organ-specific disease activity, flare or organ damage. Neither sTACI nor sBAFF-R was associated with any SLE clinical parameters in multivariable analysis. While serum BAFF correlated negatively with sBAFF-R in HC, no statistically significant correlations were observed between BAFF and its receptors in SLE patients. CONCLUSION: Serum BAFF was associated with flare and organ damage independent of the presence of its soluble receptors. While sBCMA was associated with anti-dsDNA positivity, other soluble BAFF receptors were not associated with SLE clinical indicators.

10.
Kidney Int ; 96(1): 104-116, 2019 07.
Article in English | MEDLINE | ID: mdl-31027890

ABSTRACT

IgA nephropathy (IgAN) is the most prevalent primary chronic glomerular disease for which no safe disease-specific therapies currently exist. IgAN is an autoimmune disease involving the production of autoantigenic, aberrantly O-glycosylated IgA1 and ensuing deposition of nephritogenic immune complexes in the kidney. A Proliferation Inducing Ligand (APRIL) has emerged as a key B-cell-modulating factor in this pathogenesis. Using a mouse anti-APRIL monoclonal antibody (4540), we confirm both the pathogenic role of APRIL in IgAN and the therapeutic efficacy of antibody-directed neutralization of APRIL in the grouped mouse ddY disease model. Treatment with 4540 directly translated to a reduction in relevant pathogenic mechanisms including suppressed serum IgA levels, reduced circulating immune complexes, significantly lower kidney deposits of IgA, IgG and C3, and suppression of proteinuria compared to mice receiving vehicle or isotype control antibodies. Furthermore, we translated these findings to the pharmacological characterization of VIS649, a highly potent, humanized IgG2κ antibody targeting and neutralizing human APRIL through unique epitope engagement, leading to inhibition of APRIL-mediated B-cell activities. VIS649 treatment of non-human primates showed dose-dependent reduction of serum IgA levels of up to 70%. A reduction of IgA+, IgM+, and IgG+ B cells was noted in the gut-associated mucosa of VIS649-treated animals. Population-based modeling predicted a favorable therapeutic dosing profile for subcutaneous administration of VIS649 in the clinical setting. Thus, our data highlight the potential therapeutic benefit of VIS649 for the treatment of IgAN.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Glomerulonephritis, IGA/drug therapy , Immunoglobulin A/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antigen-Antibody Complex/drug effects , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Computer Simulation , Disease Models, Animal , Drug Evaluation, Preclinical , Epitopes, B-Lymphocyte/immunology , Female , Glomerulonephritis, IGA/immunology , Humans , Immunoglobulin A/metabolism , Injections, Intravenous , Injections, Subcutaneous , Macaca fascicularis , Male , Mice , Models, Biological , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
11.
Biomed Pharmacother ; 114: 108796, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30921706

ABSTRACT

B-cell activating factor from the tumor necrosis factor family (BAFF) has revealed its critical role in B cell proliferation and survival, as well as the pathogenesis of T-cell mediated autoimmune disease. However, the effect and molecular mechanisms of BAFF on T cell physiological function have not been fully elucidated. In this study it was seen that BAFF can promote the vitality of purified T cells, increase the proportion of CD3+CD4+, CD4+CD25+, CD4+CD154+, and CD4+CD69+ subgroups and reduce the proportion of CD4+CD62L+ subgroups. Negating BAFF activity with Atacicept (TACI-Fc) reverses vitality and activation of T cells. Furthermore, immunofluorescence detection revealed that BAFF promotes the expression of BAFF receptor (BAFF-R) and transmembrane activator and CAML interactor (TACI) in T cells. Flow cytometry displayed that BAFF/BAFF-R activates the PI3K-Akt signaling pathway while the application of PI3K inhibitor (wortmannin) illuminated that BAFF induces T cell vitality and activation through the PI3K-Akt signaling pathway. We conclude that BAFF is involved in not only the physiology of B cells, but also that of T cells. BAFF affects physiological T-cell activation through BAFF-R-mediated activation of the PI3K-Akt signaling pathway which mirrors one of the pathological mechanisms of T cell-mediated autoimmune diseases.


Subject(s)
B-Cell Activating Factor/immunology , Lymphocyte Activation/immunology , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , Antigens, CD/immunology , B-Cell Activation Factor Receptor/immunology , Male , Mice , Mice, Inbred C57BL
12.
Exp Ther Med ; 17(3): 2053-2060, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30783477

ABSTRACT

B-cell activating factor (BAFF) is a major cytokine that regulates B-cell survival, maturation and differentiation through its binding with its receptors: BAFF receptor (BAFF-R), transmembrane activator and cyclophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA). These receptors have been demonstrated to be involved in tertiary lymphoid structure formation; however, their role in germinal centers (GCs) has remained elusive. The aim of the present study was to determine the expression profiles of BAFF and its receptors in secondary lymphoid tissues. Tonsils resected due to chronic tonsillitis were used as lymphoid tissues. To confirm the presence of GCs identified based on their typical structure, CD21 antibody staining was employed. The expression of BAFF, BAFF-R, TACI and BCMA was assessed by immunohistochemistry. BAFF was highly expressed in all regions of the follicle, but the highest BAFF expression was detected in the mantle zone (MZ). A high expression of BAFF-R was observed on lymphocytes in the MZ in comparison with the other regions (~80%; P<0.05), which was co-localizated with BAFF (r=0.646; P<0.001), in the MZ. TACI and BCMA exhibited similar expression among the different zones of the GCs, and co-localization with BAFF was observed inside the follicle, mainly in the dark zone. The present results indicate that BAFF is implicated in the maintenance of GCs. BAFF-R overexpression in the MZ, co-localizated with BAFF, suggests that these proteins constitute the principal pathway for the maintenance of the naïve B-cell population. Furthermore, TACI and BCMA have a role in the GC, where processes of B-cell selection, proliferation and differentiation into immunoglobulin-secreting plasma cells occur.

13.
Front Immunol ; 10: 2937, 2019.
Article in English | MEDLINE | ID: mdl-31969880

ABSTRACT

Background: B-1a B cells and gut secretory IgA (SIgA) are absent in asplenic mice. Human immunoglobulin M (IgM) memory B cells, which are functionally equivalent to mouse B-1a B cells, are reduced after splenectomy. Objective: To demonstrate whether IgM memory B cells are necessary for generating IgA-secreting plasma cells in the human gut. Methods: We studied intestinal SIgA in two disorders sharing the IgM memory B cell defect, namely asplenia, and common variable immune deficiency (CVID). Results: Splenectomy was associated with reduced circulating IgM memory B cells and disappearance of intestinal IgA-secreting plasma cells. CVID patients with reduced circulating IgM memory B cells had a reduced frequency of gut IgA+ plasma cells and a disrupted film of SIgA on epithelial cells. Toll-like receptor 9 (TLR9) and transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) induced IgM memory B cell differentiation into IgA+ plasma cells in vitro. In the human gut, TACI-expressing IgM memory B cells were localized under the epithelial cell layer where the TACI ligand a proliferation inducing ligand (APRIL) was extremely abundant. Conclusions: Circulating IgM memory B cell depletion was associated with a defect of intestinal IgA-secreting plasma cells in asplenia and CVID. The observation that IgM memory B cells have a distinctive role in mucosal protection suggests the existence of a functional gut-spleen axis.


Subject(s)
B-Lymphocytes/immunology , Common Variable Immunodeficiency/immunology , Immunoglobulin A, Secretory/immunology , Immunologic Memory/immunology , Spleen/immunology , Adult , Aged , Epithelial Cells/immunology , Female , Gastrointestinal Microbiome/immunology , Humans , Immunoglobulin M/immunology , Lymphocyte Activation/immunology , Male , Middle Aged , Plasma Cells/immunology , Toll-Like Receptor 9/immunology , Transmembrane Activator and CAML Interactor Protein/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology
14.
Cytokine ; 111: 125-130, 2018 11.
Article in English | MEDLINE | ID: mdl-30142533

ABSTRACT

BACKGROUND: Members of TNFα superfamily, A proliferation inducing ligand (APRIL), B-cell activating factor (BAFF) and Transmembrane activator and calcium cyclophylin interactor (TACI) are main regulators of B-cell function. The aim of this study was to evaluate concentrations of APRIL, BAFF and soluble TACI (sTACI) receptor in septic patients compared to healthy controls and compare concentrations of these biomarkers depending on sepsis severity and outcome. MATERIALS AND METHODS: A total of 115 septic patients and 30 healthy volunteers were included and concentrations of APRIL, BAFF and sTACI were determined in all subjects at the admission (ELISA R&D Systems tests). Concentrations of these biomarkers in function of sepsis severity (sepsis n = 94 and septic shock n = 21) and outcome (lethal n = 40, recovery n = 75) were tested, as well as correlations with APACHE II and SOFA scores, immunoglobulins, complement, PCT and CRP concentrations. RESULTS: Concentrations of all three biomarkers were significantly increased in septic patients compared to controls (AUCAPRIL = 0.982, AUCBAFF = 0.873, AUCsTACI = 0.683). Higher concentrations of APRIL and sTACI (p = 0.033, p = 0.037), and lower concentrations of BAFF (p = 0.005) were observed in patients with septic shock compared to sepsis. BAFF concentrations correlated positively with IgM, C3 and C4 levels. sTACI and APRIL were shown to be predictors of lethal outcome (p = 0.003, p = 0.049). CONCLUSIONS: Concentrations of observedTNFα superfamily members are significantly increased in septic patients, confirming their role in sepsis pathogenesis.Higher concentrations of anti-inflammatory sTACI receptor correlated with severity of sepsis and poorer prognosis, thus potentially indicating domination of anti-inflammatory response in septic patients with worse outcome.


Subject(s)
B-Cell Activating Factor , Sepsis , Transmembrane Activator and CAML Interactor Protein , Tumor Necrosis Factor Ligand Superfamily Member 13 , Adolescent , Adult , Aged , Aged, 80 and over , B-Cell Activating Factor/blood , B-Cell Activating Factor/immunology , Biomarkers/blood , Complement C3/immunology , Complement C3/metabolism , Complement C4/immunology , Complement C4/metabolism , Female , Humans , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , Sepsis/blood , Sepsis/immunology , Sepsis/mortality , Transmembrane Activator and CAML Interactor Protein/blood , Transmembrane Activator and CAML Interactor Protein/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/blood , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
15.
Cytokine ; 111: 445-453, 2018 11.
Article in English | MEDLINE | ID: mdl-29884307

ABSTRACT

BACKGROUND: The B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are tumor necrosis factor family members that regulate B cell maturation, proliferation, survival and function. We have previously shown that blood-stage Plasmodium falciparum hemozoin (HZ) can act as a T-independent antigen (TI Ag) that induces the production of specific IgG to soluble crude P. falciparum Ag through the BAFF pathway. However, we have not yet clarified whether HZ need APRIL signaling in the TI response. Here, we aimed to clarify whether both BAFF and APRIL signaling pathways play roles in HZ induction of specific antibody production without T-cell help. METHODS: Normal monocytes alone or co-cultured with naïve B cells were stimulated by HZ (10 µM) in vitro. Naïve B cell cultures, with HZ alone or with exogenous recombinant BAFF (rBAFF) and recombinant APRIL (rAPRIL) plus recombinant IL-4 (rIL-4) for 6 and 10 days were used as controls to investigate activation of B cells. At various times, the levels of sBAFF, sAPRIL, and HZ-specific IgG in the culture supernatants were assessed by enzyme-linked immunosorbent assay. The BAFF and APRIL expression levels on the HZ-stimulated monocytes and their specific receptors on activated B cells, including the BAFF receptor (BAFF-R), the transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) and the B cell maturation antigen (BCMA), were determined by flow cytometry. mRNA expression levels for the receptors were validated using Real-Time quantitative PCR. RESULTS: HZ-activated monocytes released sBAFF and sAPRIL during the 72 h stimulation period. Increased mRNA encoding of their cognate receptors, BAFF-R, TACI, and BCMA, and increased HZ-specific IgG levels were also observed in HZ induction within the monocyte and B cell co-culture. The experiments under control conditions revealed that HZ alone could induce B cell culture to produce a small amount of the specific IgG compared with those in medium alone or rBAFF + rAPRIL + rIL-4. CONCLUSION: Taken together, we suggest that in the TI response HZ stimulates monocyte and B cell co-culture to produce specific IgG through BAFF, APRIL and other independent complimentary signaling pathways.


Subject(s)
B-Cell Activating Factor/immunology , Hemeproteins/immunology , Plasmodium falciparum/immunology , T-Lymphocytes/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Adolescent , Adult , B-Lymphocytes/immunology , Coculture Techniques/methods , Humans , Immunoglobulin G/immunology , Interleukin-4/immunology , Lymphocyte Activation/immunology , Middle Aged , Monocytes/immunology , RNA, Messenger/immunology , Signal Transduction/immunology , Transmembrane Activator and CAML Interactor Protein/immunology , Young Adult
16.
Kidney Int ; 94(4): 728-740, 2018 10.
Article in English | MEDLINE | ID: mdl-29907458

ABSTRACT

B cells are known to promote the pathogenesis of systemic lupus erythematosus (SLE) via the production of pathogenic anti-nuclear antibodies. However, the signals required for autoreactive B cell activation and the immune mechanisms whereby B cells impact lupus nephritis pathology remain poorly understood. The B cell survival cytokine B cell activating factor of the TNF Family (BAFF) has been implicated in the pathogenesis of SLE and lupus nephritis in both animal models and human clinical studies. Although the BAFF receptor has been predicted to be the primary BAFF family receptor responsible for BAFF-driven humoral autoimmunity, in the current study we identify a critical role for signals downstream of Transmembrane Activator and CAML Interactor (TACI) in BAFF-dependent lupus nephritis. Whereas transgenic mice overexpressing BAFF develop progressive membranoproliferative glomerulonephritis, albuminuria and renal dysfunction, TACI deletion in BAFF-transgenic mice provided long-term (about 1 year) protection from renal disease. Surprisingly, disease protection in this context was not explained by complete loss of glomerular immune complex deposits. Rather, TACI deletion specifically reduced endocapillary, but not mesangial, immune deposits. Notably, although excess BAFF promoted widespread breaks in B cell tolerance, BAFF-transgenic antibodies were enriched for RNA- relative to DNA-associated autoantigen reactivity. These RNA-associated autoantibody specificities were specifically reduced by TACI or Toll-like receptor 7 deletion. Thus, our study provides important insights into the autoantibody specificities driving proliferative lupus nephritis, and suggests that TACI inhibition may be novel and effective treatment strategy in lupus nephritis.


Subject(s)
Autoantibodies/blood , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , Lupus Nephritis/genetics , Ribonucleoproteins/immunology , Transmembrane Activator and CAML Interactor Protein/genetics , Albuminuria/genetics , Albuminuria/urine , Animals , B-Cell Activating Factor/blood , B-Cell Activating Factor/immunology , B-Lymphocytes/immunology , Creatinine/urine , Disease Progression , Female , Hypergammaglobulinemia/genetics , Immunoglobulins/blood , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
17.
Circulation ; 138(20): 2263-2273, 2018 11 13.
Article in English | MEDLINE | ID: mdl-29858401

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular disease (heart attacks and strokes) is the major cause of death globally and is caused by the buildup of a plaque in the arterial wall. Genomic data showed that the B cell-activating factor (BAFF) receptor pathway, which is specifically essential for the survival of conventional B lymphocytes (B-2 cells), is a key driver of coronary heart disease. Deletion or antibody-mediated blockade of BAFF receptor ablates B-2 cells and decreases experimental atherosclerosis. Anti-BAFF immunotherapy is approved for treatment of autoimmune systemic lupus erythematosus, and can therefore be expected to limit their associated cardiovascular risk. However, direct effects of anti-BAFF immunotherapy on atherosclerosis remain unknown. METHODS: To investigate the effect of BAFF neutralization in atherosclerosis, the authors treated Apoe-/- and Ldlr-/- mice with a well-characterized blocking anti-BAFF antibody. Moreover, to investigate the mechanism by which BAFF impacts atherosclerosis, the authors studied atherosclerosis-prone mice that lack the alternative receptor for BAFF: transmembrane activator and calcium modulator and cyclophilin ligand interactor. RESULTS: The authors demonstrate here that anti-BAFF antibody treatment increased atherosclerosis in mice, despite efficient depletion of mature B-2 cells, suggesting a unique mechanism of action. Indeed, myeloid cell-specific deletion of transmembrane activator and calcium modulator and cyclophilin ligand interactor also results in increased atherosclerosis, while B cell-specific transmembrane activator and calcium modulator and cyclophilin ligand interactor deletion had no effect. Mechanistically, BAFF-transmembrane activator and calcium modulator and cyclophilin ligand interactor signaling represses macrophage IRF7-dependent (but not NF-κB-dependent) Toll-like receptor 9 responses including proatherogenic CXCL10 production. CONCLUSIONS: These data identify a novel B cell-independent anti-inflammatory role for BAFF in atherosclerosis and may have important clinical implications.


Subject(s)
Antibodies/therapeutic use , Atherosclerosis/therapy , B-Cell Activating Factor/immunology , Animals , Antibodies/immunology , Aorta/pathology , Bone Marrow Cells/cytology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Cholesterol/blood , Immunotherapy , Interferon Regulatory Factor-7/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 9/metabolism , Transmembrane Activator and CAML Interactor Protein/genetics , Transmembrane Activator and CAML Interactor Protein/metabolism
18.
Virulence ; 9(1): 946-953, 2018 12 31.
Article in English | MEDLINE | ID: mdl-29781374

ABSTRACT

Although the role of B cells in sepsis immunoregulation has become an interesting topic, there is lack of data on the role of B cell function regulators in prediction of multiorgan dysfunction syndrome (MODS). The aim of this study was to evaluate the prognostic value of A Proliferation Inducing Ligand (APRIL) and soluble Transmembrane Activator and CAML Interactor Protein (sTACI), the main B cell function regulators, in prediction of MODS development within the first 48 h after admission to intensive care unit, among septic patients. We included 112 patients with sepsis, treated at Clinic for Infectious Diseases and Emergency Center, Clinical Center of Vojvodina, Novi Sad, Serbia. Plasma concentrations of APRIL and sTACI were determined at the admission and potential development of MODS was confirmed in the first 48 h. Concentrations of APRIL (p = 0.003) and sTACI (p<0.001) were higher in patients who developed MODS (n = 30). ROC curve analysis showed that AUC for sTACI (AUC = 0.764) was greater than that for procalcitonin (AUC = 0.719) and APRIL (AUC = 0.673) in MODS development prediction. Multivariate regression analysis showed that sTACI, as an anti-inflammatory biomarker stimulating the apoptosis of B cells, was the only independent predictor of MODS, beside SOFA score. Elevated level of sTACI could be the alarm for the increased B cell apoptosis and development of immune paralysis. Including these biomarkers into predictive scores specific for septic patients may potentially improve their sensitivity and specificity. Measurement of their concentrations dynamics could contribute to better assessment of sepsis evolution and timely introduction of immunomodulatory therapy.


Subject(s)
DNA-Binding Proteins/blood , Multiple Organ Failure/blood , Sepsis/blood , Transcription Factors/blood , Transmembrane Activator and CAML Interactor Protein/blood , Adult , Aged , Aged, 80 and over , Apoptosis , B-Lymphocytes/cytology , Biomarkers/blood , Female , Humans , Intensive Care Units , Male , Middle Aged , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Sensitivity and Specificity , Sepsis/complications , Sepsis/diagnosis , Sepsis/physiopathology , Young Adult
19.
Clin Immunol ; 187: 95-101, 2018 02.
Article in English | MEDLINE | ID: mdl-29079163

ABSTRACT

Patients with multiple sclerosis (MS) who are treated with fingolimod have an increased proportion of transitional B cells in the circulation, but the underlying mechanism is not known. We hypothesized that B cell-activating factor of the tumor necrosis factor family (BAFF) is involved in the process. Compared with healthy controls and untreated MS patients, fingolimod-treated MS patients had significantly higher serum concentrations of BAFF, which positively correlated with the proportions and the absolute numbers of transitional B cells in blood. Despite the elevated concentrations of BAFF in fingolimod-treated MS patients, serum levels of soluble transmembrane activator and calcium-modulating cyclophilin ligand interactor, and B cell maturation antigen were not elevated. Our results show that fingolimod induces BAFF in the circulation and expands transitional B cells, but does not activate memory B cells or plasma cells in MS, which is favorable for the treatment of this disease.


Subject(s)
B-Cell Activating Factor/immunology , B-Lymphocytes/immunology , Fingolimod Hydrochloride/therapeutic use , Immunologic Memory/immunology , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Adult , B-Cell Maturation Antigen/immunology , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Multiple Sclerosis/immunology , Plasma Cells/immunology , Precursor Cells, B-Lymphoid/immunology , Transmembrane Activator and CAML Interactor Protein/immunology , Young Adult
20.
Cell Immunol ; 320: 11-19, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28947093

ABSTRACT

An underdeveloped or impaired immune response in young children is associated with increased susceptibility to Streptococcus pneumonia (Spn) infections. We determined serum antibody titers against 3 Spn vaccine candidate proteins and vaccine serotype polysaccharide antigens in a group of Spn infection prone 9-18months old and found lower IgG antibody titers to all tested antigens compared to age-matched non-infection-prone children. We also found the children had significantly reduced percentages of total memory B-cells, switched memory B-cells and plasma cells. We sought a mechanistic explanation for that result by examination of TNF family receptors (TNFRs) TACI, BCMA, and BAFFR receptor expression on B-cells and found significantly lower BAFFR and TACI expression; significantly lower proliferation of B-cells stimulated with exogenous BAFF; and diminished expression of co-stimulatory receptors B7-1 and B7-2 among infection prone vs. non-prone children. We conclude that lower expression of TNFRs, lower proliferation of B-cells in response to BAFF and lower expression of B7-1 and B7-2 by B-cells may contribute to reduced antibody responses to Spn and consequent infection proneness in young children.


Subject(s)
B-Cell Activation Factor Receptor/metabolism , B-Lymphocytes/immunology , Otitis/immunology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Transmembrane Activator and CAML Interactor Protein/metabolism , Antibodies, Bacterial/blood , B-Lymphocytes/microbiology , B7-1 Antigen/metabolism , B7-2 Antigen/metabolism , Cell Proliferation , Cells, Cultured , Disease Susceptibility , Female , Humans , Immunoglobulin G/blood , Immunologic Memory , Infant , Lymphocyte Activation , Male , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...