Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Mol Biol Evol ; 38(10): 4334-4345, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34115140

ABSTRACT

Transposable elements (TE) are an important source of genetic variation with a dynamic and content that greatly differ in a wide range of species. The origin of the intraspecific content variation is not always clear and little is known about the precise nature of it. Here, we surveyed the species-wide content of the Ty LTR-retrotransposons in a broad collection of 1,011 Saccharomyces cerevisiae natural isolates to understand what can stand behind the variation of the repertoire that is the type and number of Ty elements. We have compiled an exhaustive catalog of all the TE sequence variants present in the S. cerevisiae species by identifying a large set of new sequence variants. The characterization of the TE content in each isolate clearly highlighted that each subpopulation exhibits a unique and specific repertoire, retracing the evolutionary history of the species. Most interestingly, we have shown that ancient interspecific hybridization events had a major impact in the birth of new sequence variants and therefore in the shaping of the TE repertoires. We also investigated the transpositional activity of these elements in a large set of natural isolates, and we found a broad variability related to the level of ploidy as well as the genetic background. Overall, our results pointed out that the evolution of the Ty content is deeply impacted by clade-specific events such as introgressions and therefore follows the population structure. In addition, our study lays the foundation for future investigations to better understand the transpositional regulation and more broadly the TE-host interactions.


Subject(s)
DNA Transposable Elements , Saccharomyces cerevisiae , DNA Transposable Elements/genetics , Hybridization, Genetic , Retroelements/genetics , Saccharomyces cerevisiae/genetics
2.
Biogerontology ; 20(4): 457-474, 2019 08.
Article in English | MEDLINE | ID: mdl-30989423

ABSTRACT

It has been repeatedly reported that transposable elements (TE) become active and/or mobile in the genomes of replicatively and stress-induced senescent mammalian cells. However, the biological role of senescence-associated transposon activation and its occurrence and relevance in other eukaryotic cells remain to be elucidated. In the present study, Candida albicans, a prevalent opportunistic fungal pathogen in humans, was used to analyze changes in gene copy number of selected TE, namely Cirt2, Moa and Cmut1 during long-term culture (up to 90 days). The effects of stress stimuli (fluconazole, hydrogen peroxide, hypochlorite) and ploidy state (haploid, diploid, tetraploid cells) were also considered. An increase in copy number of Cirt2 and Moa was the most accented in tetraploid cells after 90 days of culture that was accompanied by changes in karyotype patterns and slightly more limited growth rate compared to haploid and diploid cells. Stress stimuli did not potentiate TE activity. Elevation in chromosomal DNA breaks was also observed during long-term culture of cells of different ploidy, however this was not correlated with increased TE activity. Our results suggest that increased TE activity may promote genomic diversity and plasticity, and cellular heterogeneity during long-term culture of C. albicans cells.


Subject(s)
Candida albicans/genetics , Cellular Senescence/genetics , DNA Transposable Elements/physiology , Gene Dosage , Genetic Variation/genetics , Adaptation, Physiological/genetics , Animals , Culture Techniques/methods , DNA Breaks , Humans , Ploidies , Time
3.
J Mol Evol ; 86(8): 566-580, 2018 10.
Article in English | MEDLINE | ID: mdl-30283979

ABSTRACT

Transposable elements represent the DNA fragments capable of increasing their copy number and moving within the genome. Class II mobile elements represents the DNA transposons, which transpose via excision and the subsequent reinsertion at random genomic loci. The increase of their copy number occurs only when the transposition event is coupled with the replication. IS630/Tc1/mariner DNA transposon superfamily is one of the largest and widely distributed among the Class II elements. In this work, we provide a detailed analysis of IS630/Tc1/mariner DNA transposons from the Pacific oyster, Crassostrea gigas. IS630/Tc1/mariner transposons represented in the genome of the Pacific oyster belong to four families, Tc1 (DD34E), mariner (DD34D), pogo (DDxD), and rosa (DD41D). More than a half of IS630/Tc1/mariner elements from C. gigas belong to Tc1 family. Furthermore, Mariner-31_CGi element was shown to represent a new and previously unknown family with DD37E signature. We also discovered the full-size transcripts of eight elements from Tc1, mariner, and pogo families, three of which can, presumably, retain their transposition activity.


Subject(s)
Crassostrea/genetics , DNA Transposable Elements/genetics , Genome/genetics , Animals , Phylogeny
4.
Front Genet ; 9: 461, 2018.
Article in English | MEDLINE | ID: mdl-30349559

ABSTRACT

MicroRNAs (miRNAs) are small 21-22 nt RNAs that act to regulate the expression of mRNA target genes through direct binding to mRNA targets. While miRNAs typically dominate small RNA (sRNA) transcriptomes, many other classes are present including tRNAs, snoRNAs, snRNAs, Y-RNAs, piRNAs, and siRNAs. Interactions between processing machinery and targeting networks of these various sRNA classes remains unclear, largely because these sRNAs are typically analyzed separately. Here, we present TEsmall, a tool that allows for the simultaneous processing and analysis of sRNAs from each annotated class in a single integrated workflow. The pipeline begins with raw fastq reads and proceeds all the way to producing count tables formatted for differential expression analysis. Several interactive charts are also produced to look at overall distributions in length and annotation classes. We next applied the TEsmall pipeline to sRNA libraries generated from melanoma cells responding to targeted inhibitors of the MAPK pathway. Targeted oncogene inhibitors have emerged as way to tailor cancer therapies to the particular mutations present in a given tumor. While these targeted strategies are typically effective for short intervals, the emergence of resistance is extremely common, limiting the effectiveness of single-agent therapeutics and driving the need for a better understanding of resistance mechanisms. Using TEsmall, we identified several microRNAs and other sRNA classes that are enriched in inhibitor resistant melanoma cells in multiple melanoma cell lines and may be able to serve as markers of resistant populations more generally.

5.
Sheng Wu Gong Cheng Xue Bao ; 34(2): 204-215, 2018 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-29424134

ABSTRACT

Miniature inverted-repeat transposable elements transposon is a special transposon that could transpose by "cut-paste" mechanism, which is one of characteristics of DNA transposons. Otherwise, the copy number of MITEs is very high, which is one of characteristics of RNA transposons. Many MITE families have been reported, but little about active MITEs. We summarize recent advances in studying active MITEs. Most the MITEs belong to the Tourist-like family, such as mPing, mGing, PhTourist1, Tmi1 and PhTst-3. Additionally, DTstu1 and MITE-39 belong to Stowaway-like family, and AhMITEs1 belongs to Mutator-like family. Moreover, we summarize the structure (terminal inverse repeats and target site duplications), copy number, evolution pattern and transposition characteristics of these active MITEs, to provide the foundation for the identification of other active MITEs and subsequent research on MITE transposition and amplification mechanism.


Subject(s)
DNA Transposable Elements , Plants/genetics , Genetic Engineering , Terminal Repeat Sequences
6.
Chinese Journal of Biotechnology ; (12): 204-215, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-243629

ABSTRACT

Miniature inverted-repeat transposable elements transposon is a special transposon that could transpose by "cut-paste" mechanism, which is one of characteristics of DNA transposons. Otherwise, the copy number of MITEs is very high, which is one of characteristics of RNA transposons. Many MITE families have been reported, but little about active MITEs. We summarize recent advances in studying active MITEs. Most the MITEs belong to the Tourist-like family, such as mPing, mGing, PhTourist1, Tmi1 and PhTst-3. Additionally, DTstu1 and MITE-39 belong to Stowaway-like family, and AhMITEs1 belongs to Mutator-like family. Moreover, we summarize the structure (terminal inverse repeats and target site duplications), copy number, evolution pattern and transposition characteristics of these active MITEs, to provide the foundation for the identification of other active MITEs and subsequent research on MITE transposition and amplification mechanism.

7.
Mob DNA ; 6: 8, 2015.
Article in English | MEDLINE | ID: mdl-25954322

ABSTRACT

BACKGROUND: DNA (Class II) transposons are ubiquitous in plant genomes. However, unlike for (Class I) retrotransposons, only little is known about their proliferation mechanisms, activity, and impact on genomes. Asian and African rice (Oryza sativa and O. glaberrima) diverged approximately 600,000 years ago. Their fully sequenced genomes therefore provide an excellent opportunity to study polymorphisms introduced from recent transposon activity. RESULTS: We manually analyzed 1,821 transposon related polymorphisms among which we identified 487 loci which clearly resulted from DNA transposon insertions and excisions. In total, we estimate about 4,000 (3.5% of all DNA transposons) to be polymorphic between the two species, indicating a high level of transposable element (TE) activity. The vast majority of the recently active elements are non-autonomous. Nevertheless, we identified multiple potentially functional autonomous elements. Furthermore, we quantified the impacts of insertions and excisions on the adjacent sequences. Transposon insertions were found to be generally precise, creating simple target site duplications. In contrast, excisions almost always go along with the deletion of flanking sequences and/or the insertion of foreign 'filler' segments. Some of the excision-triggered deletions ranged from hundreds to thousands of bp flanking the excision site. Furthermore, we found in some superfamilies unexpectedly low numbers of excisions. This suggests that some excisions might cause such large-scale rearrangements so that they cannot be detected anymore. CONCLUSIONS: We conclude that the activity of DNA transposons (particularly the excision process) is a major evolutionary force driving the generation of genetic diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...