Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Foods ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38890967

ABSTRACT

A miniaturized solid-phase extraction of two tropane alkaloids (TAs) and twenty-one pyrrolizidine alkaloids (PAs) from infusions of dry edible flowers using optimized µSPEed® technique was developed. The optimization of the µSPEed® methodology involved testing different cartridges and comparing various volumes and numbers of loading cycles. The final conditions allowed for a rapid extraction, taking only 3.5 min. This was achieved using a C18-ODS cartridge, conditioning with 100 µL of methanol (two cycles), loading 100 µL of the infusion sample (seven cycles), and eluting the analytes with 100 µL of methanol (two cycles). Prior to their analysis by UHPLC-IT-MS/MS, the extracts were evaporated and reconstituted in 100 µL of water (0.2% formic acid)/methanol (0.2% ammonia) 95:5 (v/v), allowing for a preconcentration factor of seven times. The methodology was successfully validated obtaining recoveries ranging between 87 and 97%, RSD of less than 12%, and MQL between 0.09 and 0.2 µg/L. The validated methodology was applied to twenty samples of edible flower infusions to evaluate the safety of these products. Two infusion samples obtained from Acmella oleracea and Viola tricolor were contaminated with 0.16 and 0.2 µg/L of scopolamine (TA), respectively, while the infusion of Citrus aurantium was contaminated with intermedine and lycopsamine (PAs) below the MQL.

2.
Nucl Med Mol Imaging ; 58(4): 185-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932763

ABSTRACT

N-3-[18F]fluoropropyl-2ß-carbomethoxy-3ß-4-iodophenyl nortropane ([18F]FP-CIT) is a radiopharmaceutical for dopamine transporter (DAT) imaging using positron emission tomography (PET) to detect dopaminergic neuronal degeneration in patients with parkinsonian syndrome. [18F]FP-CIT was granted approval by the Ministry of Food and Drug Safety in 2008 as the inaugural radiopharmaceutical for PET imaging, and it has found extensive utilization across numerous institutions in Korea. This review article presents an imaging procedure for [18F]FP-CIT PET to aid nuclear medicine physicians in clinical practice and systematically reviews the clinical studies associated with [18F]FP-CIT PET.

3.
Bioorg Chem ; 150: 107497, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852311

ABSTRACT

New derivatives of tropane scaffold were prepared from the reaction of their thione or thioamide derivatives with α-halocarbonyl compounds. The structures of all new derivatives were assured and proved with their spectral data. The novel tropane derivatives were examined for their cytotoxicity on two colon tumor cell lines; Caco2 and HCT116 cells. The most active compounds 3, 4, 5, 9d and 14a displayed significant antitumor activities with IC50 range of 9.50 - 30.15 µM compared to doxorubicin. Moreover, they revealed reduced cytotoxic effect on WI-38 normal ones, signifying their great safety. With the aim of better understanding the inhibitory potential of such compounds on heat-shock protein 90 (Hsp90), there activities were assessed against such enzyme demonstrating high inhibitory activities with IC50 range of 56.58-78.85 nM. Western blotting was carried out to ensure the inhibitory activity on Hsp90, results showed that 3 markedly suppressed Hsp90 expression on Caco2 cell line. Additionally, a molecular docking analysis of the most potent derivatives at the Hsp90 binding site was carried out in order to approve the performed in vitro assays.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Drug Screening Assays, Antitumor , HSP90 Heat-Shock Proteins , Molecular Docking Simulation , Tropanes , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Dose-Response Relationship, Drug , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Molecular Structure , Structure-Activity Relationship , Tropanes/pharmacology , Tropanes/chemistry , Tropanes/chemical synthesis , Hydrocarbons, Halogenated/chemistry , Hydrocarbons, Halogenated/pharmacology
4.
BMC Plant Biol ; 24(1): 602, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926662

ABSTRACT

BACKGROUND: Anisodus tanguticus (Maxim.) Pascher (A. tanguticus) is a valuable botanical for extracting tropane alkaloids, which are widely used in the pharmaceutical industry. Implementing appropriate cultivation methods can improve both the quality and yield of A. tanguticus. A two-year field experiment was conducted from 2021 to 2023 using a single-factor randomized complete block design replicated three times. The study examined the effects of different nutrient levels (nitrogen: 0, 75, 150, 225, 300, 375 kg/ha; phosphorus: 0, 600, 750, 900, 1050, 1200 kg/ha; potassium: 0, 75, 112.5, 150, 187.5, 225 kg/ha) on the growth, primary alkaloid contents, and alkaloid yield of A. tanguticus at different growth stages (S-Greening, S-Growing, S-Wilting; T-Greening, T-Growing, and T-Wilting) in both the roots and aboveground portions. RESULTS: Our results demonstrate that nutrient levels significantly affect the growth and alkaloid accumulation in A. tanguticus. High nitrogen levels (375 kg/ha) notably increased both root and aboveground biomass, while phosphorus had a minimal effect, especially on aboveground biomass. For alkaloid content (scopolamine, anisodamine, anisodine, atropine), a moderate nitrogen level (225 kg/ha) was most effective, followed by low potassium (75 kg/ha), with phosphorus showing a limited impact. Increased phosphorus levels led to a decrease in scopolamine content. During the T-Growing period, moderate nitrogen addition (225 kg/ha) yielded the highest alkaloid levels per unit area (205.79 kg/ha). In the T-Wilting period, low potassium (75 kg/ha) and low phosphorus (750 kg/ha) resulted in alkaloid levels of 146.91 kg/ha and 142.18 kg/ha, respectively. This indicates nitrogen has the most substantial effect on alkaloid accumulation, followed by potassium and phosphorus. The Douglas production function analysis suggests focusing on root biomass and the accumulation of scopolamine and atropine in roots to maximize alkaloid yield in A. tanguticus cultivation. CONCLUSIONS: Our findings show that the optimum harvesting period for A. tanguticus is the T-Wilting period, and that the optimal nitrogen addition is 225 kg/ha, the optimal potassium addition is 75 kg/ha, and the optimal phosphorus addition is 600 kg/ha or less.


Subject(s)
Alkaloids , Nitrogen , Nutrients , Phosphorus , Phosphorus/metabolism , Nitrogen/metabolism , Alkaloids/metabolism , Nutrients/metabolism , Potassium/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Ranunculaceae/metabolism
5.
Food Addit Contam Part B Surveill ; 17(2): 180-192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38629617

ABSTRACT

The market demand for herbal dietary supplements is rapidly growing and such products are becoming more common and accessible to consumers. However, the knowledge about their safety remains incomplete. Herbal dietary supplements are one of the food groups that can contribute significantly to human health concerns arising from chronic exposure to pyrrolizidine alkaloids and mycotoxins. This study aimed to simultaneously determine 79 natural contaminants, including mycotoxins, as well as pyrrolizidine and tropane alkaloids in herbal dietary supplements in one analytical run. Exposure assessment and human health risks were assessed for all compounds included in this study. The total concentration of naturally occurring contaminants in herbal dietary supplements reached 5.3 mg kg-1 and the most frequently detected mycotoxins were tentoxin and alternariol monomethyl ether. The latter was detected with the highest frequency, reaching concentrations up to 2.5 mg kg-1. The obtained results indicate a potential risk to public health related to herbal dietary supplement consumption.


Subject(s)
Dietary Supplements , Food Contamination , Mycotoxins , Pyrrolizidine Alkaloids , Pyrrolizidine Alkaloids/analysis , Pyrrolizidine Alkaloids/chemistry , Dietary Supplements/analysis , Humans , Mycotoxins/analysis , Food Contamination/analysis , Drug Contamination
6.
Food Chem Toxicol ; 186: 114589, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467298

ABSTRACT

Tropane alkaloids (TA) are natural toxins found in certain plants, including cereals, of which atropine and scopolamine are the main species of concern due to their acute toxicity. This study aimed to determine the occurrence of TA in cereal foods and assess the potential health risks associated with their consumption in Korea. TA levels were analyzed in 80 raw and 71 processed cereal samples, which were distributed throughout Korea in 2021, using ultra-performance liquid chromatography-tandem mass spectrometry. At least one of the six TA species, namely atropine, scopolamine, pseudotropine, tropinone, scopine, and 6-hydroxytropinone, was detected in 10 out of the 151 samples at levels ranging from 0.12 to 88.10 µg kg-1. Dietary exposure (mean, 0.23 ng kg-1 bw day-1) to atropine and scopolamine in the Korean population was estimated to be low across all age groups. This is despite considering worst-case scenarios using the total concentrations of atropine and scopolamine in a millet sample, both of which were detected, and 95th percentile consumption for consumers of millet only. Both the hazard index and margin of exposure methods indicated that the current levels of TA exposure from millet consumption were unlikely to pose significant health risks to the Korean population.


Subject(s)
Edible Grain , Tropanes , Atropine , Edible Grain/chemistry , Republic of Korea , Risk Assessment , Scopolamine/toxicity , Tropanes/analysis , Tropanes/chemistry , Alkaloids/analysis , Alkaloids/chemistry
7.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Article in English | MEDLINE | ID: mdl-38522709

ABSTRACT

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Subject(s)
Atropa belladonna , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Mixed Function Oxygenases , Nitrogen , Tropanes , Nitrogen/metabolism , Gene Expression Regulation, Plant/drug effects , Atropa belladonna/metabolism , Atropa belladonna/genetics , Tropanes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Medicinal/metabolism , Plants, Medicinal/genetics , Hyoscyamine/metabolism , Hyoscyamine/genetics , Scopolamine/metabolism , Promoter Regions, Genetic
8.
Heliyon ; 10(4): e26523, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404897

ABSTRACT

In their natural habitat, insects may bioaccumulate toxins from plants for defence against predators. When insects are accidently raised on feed that is contaminated with toxins from co-harvested herbs, this may pose a health risk when used for human or animal consumption. Plant toxins of particular relevance are the pyrrolizidine alkaloids (PAs), which are genotoxic carcinogens produced by a wide variety of plant species and the tropane alkaloids (TAs) which are produced by a number of Solanaceae species. This study aimed to investigate the transfer of these plant toxins from substrates to black soldier fly larvae (BSFL) and lesser mealworm (LMW). PAs and the TAs atropine and scopolamine were added to insect substrate simulating the presence of different PA- or TA-containing herbs, and BSFL and LMW were grown on these substrates. Bioaccumulation from substrate to insects varied widely among the different plant toxins. Highest bioaccumulation was observed for the PAs europine, rinderine and echinatine. For most PAs and for atropine and scopolamine, bioaccumulation was very low. In the substrate, PA N-oxides were quickly converted to the corresponding tertiary amines. More research is needed to verify the findings of this study at larger scale, and to determine the potential role of the insect and/or substrate microbiome in metabolizing these toxins.

9.
Plant Physiol Biochem ; 208: 108439, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408396

ABSTRACT

Putrescine, produced via the arginine decarboxylase (ADC)/ornithine decarboxylase (ODC)-mediated pathway, is an initial precursor for polyamines metabolism and the root-specific biosynthesis of medicinal tropane alkaloids (TAs). These alkaloids are widely used as muscarinic acetylcholine antagonists in clinics. Although the functions of ODC in biosynthesis of polyamines and TAs have been well investigated, the role of ADC is still poorly understood. In this study, enzyme inhibitor treatment showed that ADC was involved in the biosynthesis of putrescine-derived metabolites and root growth in Atropa belladonna. Further analysis found that there were six ADC unigenes in the A. belladonna transcriptome, with two of them, AbADC1 and AbADC2, exhibiting high expression in the roots. To investigate their roles in TAs/polyamines metabolism and root growth, RNA interference (RNAi) was used to suppress either AbADC1 or AbADC2 expression in A. belladonna hairy roots. Suppression of the AbADC1 expression resulted in a significant reduction in the putrescine content and hairy root biomass. However, it had no noticeable effect on the levels of N-methylputrescine and the TAs hyoscyamine, anisodamine, and scopolamine. On the other hand, suppression of AbADC2 expression markedly reduced the levels of putrescine, N-methylputrescine, and TAs, but had no significant effect on hairy root biomass. According to ß-glucuronidase (GUS) staining assays, AbADC1 was mainly expressed in the root elongation and division region while AbADC2 was mainly expressed in the cylinder of the root maturation region. These differences in expression led to functional divergence, with AbADC1 primarily regulating root growth and AbADC2 contributing to TA biosynthesis.


Subject(s)
Alkaloids , Atropa belladonna , Carboxy-Lyases , Atropa belladonna/genetics , Atropa belladonna/metabolism , Putrescine/metabolism , Tropanes/metabolism
10.
Plants (Basel) ; 13(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38202439

ABSTRACT

When colonizing new ranges, plant populations may benefit from the absence of the checks imposed by the enemies, herbivores, and pathogens that regulated their numbers in their original range. Therefore, rates of plant damage or infestation by natural enemies are expected to be lower in the new range. Exposing both non-native and native plant populations in the native range, where native herbivores are present, can be used to test whether resistance mechanisms have diverged between populations. Datura stramonium is native to the Americas but widely distributed in Spain, where populations show lower herbivore damage than populations in the native range. We established experiments in two localities in the native range (Mexico), exposing two native and two non-native D. stramonium populations to natural herbivores. Plant performance differed between the localities, as did the abundance of the main specialist herbivore, Lema daturaphila. In Teotihuacán, where L. daturaphila is common, native plants had significantly more adult beetles and herbivore damage than non-native plants. The degree of infestation by the specialist seed predator Trichobaris soror differed among populations and between sites, but the native Ticumán population always had the lowest level of infestation. The Ticumán population also had the highest concentration of the alkaloid scopolamine. Scopolamine was negatively related to the number of eggs deposited by L. daturaphila in Teotihuacán. There was among-family variation in herbivore damage (resistance), alkaloid content (scopolamine), and infestation by L. daturaphila and T. soror, indicating genetic variation and potential for further evolution. Although native and non-native D. stramonium populations have not yet diverged in plant resistance/constitutive defense, the differences between ranges (and the two experimental sites) in the type and abundance of herbivores suggest that further research is needed on the role of resource availability and adaptive plasticity, specialized metabolites (induced, constitutive), and the relationship between genealogical origin and plant defense in both ranges.

11.
Plant Commun ; 5(1): 100680, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37660252

ABSTRACT

Tropane alkaloids (TAs), which are anticholinergic agents, are an essential class of natural compounds, and there is a growing demand for TAs with anesthetic, analgesic, and spasmolytic effects. Anisodus acutangulus (Solanaceae) is a TA-producing plant that was used as an anesthetic in ancient China. In this study, we assembled a high-quality, chromosome-scale genome of A. acutangulus with a contig N50 of 7.4 Mb. A recent whole-genome duplication occurred in A. acutangulus after its divergence from other Solanaceae species, which resulted in the duplication of ADC1 and UGT genes involved in TA biosynthesis. The catalytic activities of H6H enzymes were determined for three Solanaceae plants. On the basis of evolution and co-expressed genes, AaWRKY11 was selected for further analyses, which revealed that its encoded transcription factor promotes TA biosynthesis by activating AaH6H1 expression. These findings provide useful insights into genome evolution related to TA biosynthesis and have potential implications for genetic manipulation of TA-producing plants.


Subject(s)
Anesthetics , Solanaceae , Tropanes/analysis , Tropanes/metabolism , Solanaceae/genetics , Solanaceae/metabolism , Chromosomes/chemistry , Chromosomes/metabolism , Anesthetics/metabolism , China
12.
Eur J Nucl Med Mol Imaging ; 51(2): 468-480, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37807003

ABSTRACT

PURPOSE: Multiple system atrophy (MSA) is a rare neurodegenerative disease, often presented with orthostatic hypotension (OH), which is a disabling symptom but has not been very explored. Here, we investigated MSA patients with OH by using positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG) and 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane (11C-CFT) for in vivo evaluation of the glucose metabolism and dopaminergic function of the brain. METHODS: Totally, 51 patients with MSA and 20 healthy controls (HC) who underwent 18F-FDG PET/CT were retrospectively enrolled, among which 24 patients also underwent 11C-CFT PET/CT. All patients were divided into MSA-OH(+) and MSA-OH(-) groups. Then, statistical parametric mapping (SPM) method was used to reveal the regional metabolic and dopaminergic characteristics of MSA-OH(+) compared with MSA-OH(-). Moreover, the metabolic networks of MSA-OH(+), MSA-OH(-) and HC groups were also constructed and analyzed based on graph theory to find possible network-level changes in MSA patients with OH. RESULTS: The SPM results showed significant hypometabolism in the pons and right cerebellar tonsil, as well as hypermetabolism in the left parahippocampal gyrus and left superior temporal gyrus in MSA-OH(+) compared with MSA-OH(-). A reduced 11C-CFT uptake in the left caudate was also shown in MSA-OH(+) compared with MSA-OH(-). In the network analysis, significantly reduced local efficiency and clustering coefficient were shown in MSA-OH(+) compared with HC, and decreased nodal centrality in the frontal gyrus was found in MSA-OH(+) compared with MSA-OH(-). CONCLUSION: In this study, the changes in glucose metabolism in the pons, right cerebellar tonsil, left parahippocampal gyrus and left superior temporal gyrus were found closely related to OH in MSA patients. And the decreased presynaptic dopaminergic function in the left caudate may contribute to OH in MSA. Taken together, this study provided in vivo pathophysiologic information on MSA with OH from neuroimaging approach, which is essential for a better understanding of MSA with OH.


Subject(s)
Hypotension, Orthostatic , Multiple System Atrophy , Humans , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/metabolism , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Retrospective Studies , Hypotension, Orthostatic/diagnostic imaging , Positron-Emission Tomography/methods , Glucose/metabolism
13.
Food Chem ; 438: 138010, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37983999

ABSTRACT

In recent years, the monitoring of tropane alkaloids, specifically hyoscyamine and scopolamine, in food has become a pressing concern. This is due to increasing reports of food contamination with these compounds worldwide, raising awareness about the potential risks associated with their consumption. A novel method is proposed here for the determination of the sum of (+)-hyoscyamine, (-)-hyoscyamine, and (-)-scopolamine in buckwheat-based matrices, using solid-liquid extraction at low temperature and quantification by bidimensional chromatography coupled to tandem mass spectrometry. The validated method presented a linear response in the concentration range of 2.5-15 µg kg-1 (r > 0.99). The precision and accuracy were in the ranges from 0.8 to 11.0 % and from 96 to 103 %, respectively. The limit of quantification (LOQ) was 2.5 µg kg-1. No contamination was found at levels above the LOQ in any of the 18 samples analyzed (buckwheat flour, grains, and gluten-free mix).


Subject(s)
Alkaloids , Fagopyrum , Hyoscyamine , Alkaloids/analysis , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Flour/analysis , Brazil , Temperature , Tropanes/chemistry , Scopolamine/analysis
14.
Acta Pharmaceutica Sinica ; (12): 775-783, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016625

ABSTRACT

Tropane alkaloids (TAs) are a class of anticholinergic drugs widely used in clinical practice and mainly extracted from plant, among which Atopa belladonna is the main commercial drug source. It is of great industrial value to obtain TAs in large quantities by plant metabolic engineering. In TAs pathway, cytochrome oxidase CYP82M3 catalyze the synthesis of tropinone and then tropinone reductase I (TRI) compete with TRII for tropinone to form tropine leading to the TAs synthesis (drainage). In this study, based on the "increasing flow and drainage" metabolic engineering strategy, two genes, namely HnCYP82M3 and DsTRI from Hyoscyamus niger and Datura stramonium, respectively, were overexpressed in the hair roots of A. belladonna, with a view to promote the TAs accumulation. The HnCYP82M3 gene was cloned from the root of H. niger, and it encoded amino acid with 91.7% sequence identity with AbCYP82M3 from A. belladonna. Overexpression of HnCYP82M3 alone did not affect the content of TAs in hair roots of A. belladonna, indicating that CYP82M3 was not a key enzyme in TAs biosynthesis. Simultaneous overexpression of HnCYP82M3 and DsTRI greatly promoted the accumulation of the three TAs, and the contents of hyoscyamine, anisodamine and scopolamine were 4.97 times, 2.83 times and 2.19 times that of the control, respectively, and the increase amplitude was greater than that of single overexpression of DsTRI. This study showed that the "increasing flow and drainage" strategy of enzyme genes co-expression at branch points was a promising metabolic engineering method to effectively improve the biosynthesis of TAs in A. belladonna, and laid a theoretical and technical foundation for the large-scale industrial acquisition of TAs.

15.
BMC Plant Biol ; 23(1): 655, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110871

ABSTRACT

BACKGROUND: Although it is well recognized that core root microorganisms contribute to plant health and productivity, little is known about their role to the accumulation of secondary metabolites. The roots of Anisodus tanguticus, a traditional herbal medication utilized by Tibetan medicine, are rich in tropane alkaloids. We collected wild A. tanguticus populations throughout a 1500 km transect on the Qinghai-Tibetan Plateau. RESULTS: Our results showed that despite sampling at a distance of 1500 km, the root of A. tanguticus selectively recruits core root bacteria. We obtained 102 root bacterial core OTUs, and although their number only accounted for 2.99% of the total, their relative abundance accounted for 73% of the total. Spearman correlation and random forest analyses revealed that the composition of core root microbiomes was related to anisodine contents, aboveground biomass and nitrogen contents of Anisodus tanguticus. Among them, the main role is played by Rhizobacter, Variovorax, Polaromonas, and Mycobacterium genus that are significantly enriched in roots. Functional prediction by FAPROTAX showed that nitrogen-cycling microorganisms and pathogenic bacteria are strongly associated with anisodine contents, aboveground biomass and nitrogen contents of Anisodus tanguticus. CONCLUSIONS: Our findings show that the root selectively recruits core root bacteria and revealed that the core microbiomes and microbial functions potentially contributed to the anisodine contents, aboveground biomass and nitrogen contents of the plant. This work may increase our understanding of the interactions between microorganisms and plants and improve our ability to manage root microbiota to promote sustainable production of herbal medicines.


Subject(s)
Scopolamine Derivatives , Tropanes , Scopolamine Derivatives/metabolism , Tropanes/metabolism , Bacteria , Nitrogen/metabolism , Plant Roots/metabolism
16.
Front Plant Sci ; 14: 1297546, 2023.
Article in English | MEDLINE | ID: mdl-38098791

ABSTRACT

Anisodus tanguticus is a valuable plant for extracting tropane alkaloids. However, the mechanisms by which plant microbiome mediate the accumulation of tropane alkaloids in Anisodus tanguticus are still not well understood. In this study, we collected 55 wild Anisodus tanguticus populations on the Tibetan Plateau and the tropane alkaloids content, and root-related bacteria and fungi diversity were analyzed using HPLC and 16 s rDNA and ITS sequencing. The results showed that tropane alkaloids content has obvious geographical distribution characteristics. Anisodine content had a significant positive correlation with latitude, while anisodamine and atropine content had a significant negative correlation with latitude. Variation partition analysis (VPA) showed that root endophytes play a significant role in promoting tropane alkaloid production in Anisodus tanguticus roots. The root endophytes alone explained 14% of the variation, which was the largest contributor. Soil properties variables could independently explain 5% of the variation, and climate variables could explain 1% of the variation. Of these, endophytic fungi alone accounted for 11%, while bacteria explained only 5%. Random forests and Mantel test showed that different regionally enriched endophytic fungi have a greater impact on the accumulation of tropane alkaloids than the whole endophytic fungi. Richness and relative abundance of enriched endophytic fungi in Hengduan-Qilian Mountains (HQ) group has a significant positive correlation with anisodine content, while richness and relative abundance of enriched endophytic fungi in Himalayas-Hengduan Mountains (HH) group has a significant positive correlation with anisodamine and atropine content. And, these enriched endophytic fungi have high network connectivity and distributed in separate network modules. This study further confirmed that endophytes were closely related to tropane alkaloids accumulation in Anisodus tanguticus and contribute to promote sustainable development, cultivation, and precision medicine of Anisodus tanguticus.

17.
Life (Basel) ; 13(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004321

ABSTRACT

Members of the genus Atropa contain various tropane alkaloids, including atropine ((±)-hyoscyamine) and scopolamine, which possess medicinal properties. Preserving the diverse genetic background of wild populations via optimal plant production from seeds could be essential for avoiding the loss of potential uses. We analyzed the germination ecology of two Atropa species comprising the threatened A. baetica and widespread A. belladonna to determine the: (1) influence of temperature, light, and seed age on germination patterns; (2) effects of cold stratification and gibberellic acid (GA3); (3) phenology of seedling emergence in outdoor conditions; (4) phenology of dormancy break and loss of viability in buried seeds; and (5) ability to form persistent soil seed banks. Freshly matured seeds exhibited conditional physiological dormancy, with germination at high temperatures (32/18 °C) but not at low and cold ones (5, 15/4, 20/7 °C). The germination ability increased with time of dry storage and with GA3, thereby suggesting nondeep physiological dormancy. Under outdoor conditions, no seedlings emerged during the first post-sown autumn, but emergence peaks occurred in late winter-early spring. Both species could form small persistent soil seed banks with short durations (3-5 years). A plant production protocol from seeds was established for both taxa.

18.
Food Res Int ; 174(Pt 1): 113614, 2023 12.
Article in English | MEDLINE | ID: mdl-37986536

ABSTRACT

Alkaloids are naturally occurring compounds containing basic nitrogen atoms. They are biosynthesized mainly by plants but also by some fungi species. Many alkaloids are toxic to humans and animals, and they have been classified as food contaminants. Among them, ergot, tropane, and pyrrolizidine alkaloids have maximum levels in foods, established by the Commission Regulation (EU) 2023/915. In this study, an analytical method was successfully developed and validated for the simultaneous determination of 42 ergot, tropane, and pyrrolizidine alkaloids and their N-oxides in cereal-based food. The method includes QuEChERS-based extraction followed by liquid chromatography coupled with tandem mass spectrometry. The proposed method was validated providing recoveries ranging from 71 to 119 %, intra- and inter-day precision lower than 19 %, and limits of quantification between 0.5 and 1.0 µg kg-1. Finally, the analysis of reference materials coming from FAPAS proficiency tests demonstrated the suitability for purpose of the methodology (z-scores < 2). Nine cereal-based products samples were analyzed of which ergot alkaloids were detected in two of them, while one sample showed the presence of three pyrrolizidine alkaloids.


Subject(s)
Pyrrolizidine Alkaloids , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Pyrrolizidine Alkaloids/analysis , Edible Grain/chemistry , Tropanes/analysis
19.
Cureus ; 15(9): e45604, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37868440

ABSTRACT

This case report reveals a rare incident of unintended Jimson weed (Datura stramonium) exposure within a family in the United States. In this narrative, a pregnant 36-year-old Asian woman and her family unknowingly ingested homemade soup infused with Jimson weed leaves. This led to symptoms such as vomiting, dry mouth, blurred vision, flushed skin, breathing difficulties, and hallucinations. While the woman and her daughter quickly recovered, the husband's severe hallucinations required intensive care. The episode underscores the vital importance of accurate plant identification, particularly in homegrown produce. Recognizing and understanding anticholinergic poisoning symptoms becomes crucial for timely diagnosis and intervention, preventing such occurrences. This case serves as a poignant reminder of the potential risks concealed within our everyday environments.

20.
Nat Prod Res ; : 1-6, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37830795

ABSTRACT

Alkaloids are a group of secondary metabolites that generate great interest since ancient times. Numerous Solanaceae plants are rich sources of tropane alkaloids as hyoscyamine and scopolamine which are obtained mainly from Hyoscyamus niger, Datura stramonium, Atropa belladonna, Mandragora officinarum. In the present study it was developed an HPLC-DAD using an XBridge Phenyl column for the quantification of scopolamine and hyoscyamine, molecules used in pharmaceutical industry to treat stomach or intestinal disorders. A. belladonna presented hyoscyamine and scopolamine, the first one ranged from 1466 to 5117 mg/Kg DW while the second one ranged from 140 to 1743 mg/Kg DW. In D. stramonium, hyoscyamine was not found while scopolamine ranged from 430 to 8980 mg/Kg DW. On the contrary H. niger and M. officinarum did not contain any trace of these alkaloids. This is the first work in which different parts of four Solanaceae were analysed for their hyoscyamine and scopolamine content.

SELECTION OF CITATIONS
SEARCH DETAIL
...