Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pathogens ; 11(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35335686

ABSTRACT

Congenital Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is responsible for 22.5% of new cases each year. However, placental transmission occurs in only 5% of infected mothers and it has been proposed that the epithelial turnover of the trophoblast can be considered a local placental defense against the parasite. Thus, Trypanosoma cruzi induces cellular proliferation, differentiation, and apoptotic cell death in the trophoblast, which are regulated, among other mechanisms, by small non-coding RNAs such as microRNAs. On the other hand, ex vivo infection of human placental explants induces a specific microRNA profile that includes microRNAs related to trophoblast differentiation such as miR-512-3p miR-515-5p, codified at the chromosome 19 microRNA cluster. Here we determined the expression validated target genes of miR-512-3p and miR-515-5p, specifically human glial cells missing 1 transcription factor and cellular FLICE-like inhibitory protein, as well as the expression of the main trophoblast differentiation marker human chorionic gonadotrophin during ex vivo infection of human placental explants, and examined how the inhibition or overexpression of both microRNAs affects parasite infection. We conclude that Trypanosoma cruzi-induced trophoblast epithelial turnover, particularly trophoblast differentiation, is at least partially mediated by placenta-specific miR-512-3p and miR-515-5p and that both miRNAs mediate placental susceptibility to ex vivo infection of human placental explants. Knowledge about the role of parasite-modulated microRNAs in the placenta might enable their use as biomarkers, as prognostic and therapeutic tools for congenital Chagas disease in the future.

2.
Placenta ; 35(12): 1035-42, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25315217

ABSTRACT

INTRODUCTION: The congenital transmission of Trypanosoma cruzi (T. cruzi) is responsible for one-third of new Chagas disease cases each year. During congenital transmission, the parasite breaks down the placental barrier formed by the trophoblast, basal laminae and villous stroma. The observation that only 5% of infected mothers transmit the parasite to the fetus implies that the placenta may impair parasite transmission. The trophoblast undergoes continuous epithelial turnover, which is considered part of innate immunity. Therefore, we propose that T. cruzi induces differentiation in the trophoblast as part of a local antiparasitic mechanism of the placenta. METHODS: We analyzed ß-human chorionic gonadotropin (ß-hCG) and syncytin protein expression in HPCVE and BeWo cells using immunofluorescence and western blotting. Additionally, ß-hCG secretion into the culture medium was measured by ELISA. We assessed the differentiation of trophoblastic cells in BeWo cells using the two-color fusion assay and by determining desmoplakin re-distribution. RESULTS: T. cruzi trypomastigotes induce ß-hCG secretion and protein expression as well as syncytin protein expression in HPCVE and BeWo cells. Additionally, the parasite induces the trophoblast fusion of BeWo cells. DISCUSSION: T. cruzi induces differentiation of the trophoblast, which may contribute to increase the trophoblast turnover. The turnover could be a component of local antiparasitic mechanisms in the human placenta.


Subject(s)
Cell Differentiation , Chagas Disease/pathology , Placenta/parasitology , Trophoblasts/parasitology , Trypanosoma cruzi , Cell Line , Chagas Disease/metabolism , Chorionic Gonadotropin, beta Subunit, Human/metabolism , Female , Gene Products, env/metabolism , Humans , Placenta/metabolism , Placenta/pathology , Pregnancy , Pregnancy Proteins/metabolism , Trophoblasts/metabolism , Trophoblasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL