Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Eur J Pharmacol ; 983: 176960, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39214274

ABSTRACT

Alterations in commensal gut microbiota, such as butyrate-producing bacteria and its metabolites, have been linked to stress-related brain disorders, including depression. Herein, we investigated the effect of Faecalibacterium prausnitzii (ATCC-27766) administered along with fructooligosaccharides (FOS) and galactooligosaccharides (GOS) in a rat model of treatment-resistant depression (TRD). The behavioral changes related to anxiety-, anhedonia- and despair-like phenotypes were recorded employing elevated plus maze, sucrose-preference test, and forced-swim test, respectively. Rats exposed to unpredictable chronic mild-stress (UCMS) and adrenocorticotropic hormone (ACTH) injections exhibited a TRD-like phenotype. Six-week administration of F. prausnitzii and FOS + GOS ameliorated TRD-like conditions in rats. This synbiotic treatment also restored the decreased levels of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate in the fecal samples of TRD rats. Synbiotic-recipient TRD rats displayed an increased abundance of Lactobacillus helveticus, Lactobacillus hamsteri, and Ruminococcus flavefaciens. Moreover, more mucus-producing goblet cells were seen in the colon of synbiotic-treated rats, suggesting improved gut health. The synbiotic treatment effectively modulated neuroinflammation by reducing proinflammatory cytokines (IFN-γ, TNF-α, CRP, and IL-6). It normalized the altered levels of key neurotransmitters such as serotonin, gamma-aminobutyric acid, noradrenaline, and dopamine in the hippocampus and/or frontal cortex. The enhanced expression of brain-derived neurotrophic factor, tryptophan hydroxylase 1, and serotonin transporter-3 (SERT-3), and reduced levels of indoleamine 2,3-dioxygenase 1 (IDO-1) and kynurenine metabolite were observed in the synbiotic-treated group. We suggest that F. prausnitzii and FOS + GOS-loaded synbiotic may reverse the TRD-like symptoms in rats by positively impacting gut health, neuroinflammation, neurotransmitters, and gut microbial composition.


Subject(s)
Brain-Gut Axis , Depression , Faecalibacterium prausnitzii , Gastrointestinal Microbiome , Oligosaccharides , Synbiotics , Animals , Synbiotics/administration & dosage , Male , Rats , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Gastrointestinal Microbiome/drug effects , Oligosaccharides/pharmacology , Oligosaccharides/administration & dosage , Depression/therapy , Depression/drug therapy , Depression/metabolism , Brain/metabolism , Brain/drug effects , Behavior, Animal/drug effects , Disease Models, Animal , Rats, Sprague-Dawley , Anxiety/drug therapy , Anxiety/therapy
2.
Sci China Life Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39110402

ABSTRACT

Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.

3.
Trends Pharmacol Sci ; 45(9): 824-838, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39129061

ABSTRACT

Human physiology is profoundly influenced by the gut microbiota, which generates a wide array of metabolites. These microbiota-derived compounds serve as signaling molecules, interacting with various cellular targets in the gastrointestinal tract and distant organs, thereby impacting our immune, metabolic, and neurobehavioral systems. Recent advancements have unveiled unique physiological functions of diverse metabolites derived from tryptophan (Trp) and bile acids (BAs). This review highlights the emerging chemophysiological diversity of these metabolites and discusses the role of chemical and biological tools in analyzing and therapeutically manipulating microbial metabolism and host targets, with the aim of bridging the chemical diversity with physiological complexity in host-microbe molecular interactions.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Tryptophan , Gastrointestinal Microbiome/physiology , Humans , Bile Acids and Salts/metabolism , Animals , Tryptophan/metabolism
4.
Metabolites ; 14(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39057693

ABSTRACT

Amino acids (AAs) and their metabolites are important building blocks, energy sources, and signaling molecules associated with various pathological phenotypes. The quantification of AA and tryptophan (TRP) metabolites in human serum and plasma is therefore of great diagnostic interest. Therefore, robust, reproducible sample extraction and processing workflows as well as rapid, sensitive absolute quantification are required to identify candidate biomarkers and to improve screening methods. We developed a validated semi-automated robotic liquid extraction and processing workflow and a rapid method for absolute quantification of 20 free, underivatized AAs and six TRP metabolites using dual-column U(H)PLC-MRM-MS. The extraction and sample preparation workflow in a 96-well plate was optimized for robust, reproducible high sample throughput allowing for transfer of samples to the U(H)PLC autosampler directly without additional cleanup steps. The U(H)PLC-MRM-MS method, using a mixed-mode reversed-phase anion exchange column with formic acid and a high-strength silica reversed-phase column with difluoro-acetic acid as mobile phase additive, provided absolute quantification with nanomolar lower limits of quantification within 7.9 min. The semi-automated extraction workflow and dual-column U(H)PLC-MRM-MS method was applied to a human prostate cancer study and was shown to discriminate between treatment regimens and to identify metabolites responsible for discriminating between healthy controls and patients on active surveillance.

5.
Phytomedicine ; 132: 155847, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996505

ABSTRACT

BACKGROUND: Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE: This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS: Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS: HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1ß pathway and increased proinflammatory IL1ß in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1ß pathway. CONCLUSIONS: The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1ß pathway, specifically by targeting AKK and tryptophan metabolites.


Subject(s)
Akkermansia , Antidepressive Agents , Depression , Gastrointestinal Microbiome , Hypericum , Interleukin-1beta , NF-kappa B , Tryptophan , Animals , Hypericum/chemistry , Gastrointestinal Microbiome/drug effects , Depression/drug therapy , Tryptophan/metabolism , Tryptophan/pharmacology , Male , NF-kappa B/metabolism , Interleukin-1beta/metabolism , Mice , Antidepressive Agents/pharmacology , Mice, Inbred C57BL , Caspase 1/metabolism , Fecal Microbiota Transplantation , Verrucomicrobia , Plant Extracts/pharmacology , Signal Transduction/drug effects , Dysbiosis/drug therapy , Dysbiosis/microbiology , Disease Models, Animal
6.
Anal Biochem ; 694: 115605, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38992485

ABSTRACT

Sepsis is a life-threatening condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Dysregulated tryptophan (TRP) metabolites serve as significant indicators for endogenous immune turnovers and abnormal metabolism in the intestinal microbiota during sepsis. Therefore, a high coverage determination of TRP and its metabolites in sepsis is beneficial for the diagnosis and prognosis of sepsis, as well as for understanding the underlying mechanism of sepsis development. However, similar structures in TRP metabolites make it challenging for separation and metabolite identification. Here, high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD) was developed to determine TRP metabolites in rat serum. The first-order derivative spectrophotometry of targeted metabolites in the serum was investigated and proved to be promising for chromatographic peak annotation across different columns and systems. The established method separating the targeted metabolites was optimized and validated to be sensitive and accurate. Application of the method revealed dysregulated TRP metabolites, associated with immune disorders and NAD + metabolism in both the host and gut flora in septic rats. Our findings indicate that the derivative spectrophotometry-assisted method enhances metabolite identifications for the chromatographic systems based on DAD detectors and holds promise for precision medicine in sepsis.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Tryptophan , Tryptophan/metabolism , Animals , Sepsis/microbiology , Sepsis/metabolism , Rats , Chromatography, High Pressure Liquid/methods , Male , Rats, Sprague-Dawley , Spectrophotometry
7.
Biomol Ther (Seoul) ; 32(4): 403-423, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38898687

ABSTRACT

The human gastrointestinal (GI) tract houses a diverse microbial community, known as the gut microbiome comprising bacteria, viruses, fungi, and protozoa. The gut microbiome plays a crucial role in maintaining the body's equilibrium and has recently been discovered to influence the functioning of the central nervous system (CNS). The communication between the nervous system and the GI tract occurs through a two-way network called the gut-brain axis. The nervous system and the GI tract can modulate each other through activated neuronal cells, the immune system, and metabolites produced by the gut microbiome. Extensive research both in preclinical and clinical realms, has highlighted the complex relationship between the gut and diseases associated with the CNS, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review aims to delineate receptor and target enzymes linked with gut microbiota metabolites and explore their specific roles within the brain, particularly their impact on CNS-related diseases.

8.
Biomedicines ; 12(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38790965

ABSTRACT

Many biologically active metabolites of the essential amino acid L-tryptophan (Trp) are associated with different neurodegenerative diseases and neurological disorders. Precise and reliable methods for their determination are needed. Variability in their physicochemical properties makes the analytical process challenging. In this case, chemical modification of analyte derivatization could come into play. Here, we introduce a novel fast reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled with tandem mass spectrometry (MS/MS) method for the determination of Trp and its ten metabolites in human plasma samples after derivatization with 2-bromo-4'-nitroacetophenone (BNAP). The derivatization procedure was optimized in terms of incubation time, temperature, concentration, and volume of the derivatization reagent. Method development comprises a choice of a suitable stationary phase, mobile phase composition, and gradient elution optimization. The developed method was validated according to the ICH guidelines. Results of all validation parameters were within the acceptance criteria of the guideline, i.e., intra- and inter-day precision (expressed as relative standard deviation; RSD) were in the range of 0.5-8.2% and 2.3-7.4%, accuracy was in the range of 93.3-109.7% and 94.7-110.1%, limits of detection (LODs) were in the range of 0.15-9.43 ng/mL, coefficients of determination (R2) were higher than 0.9906, and carryovers were, in all cases, less than 8.8%. The practicability of the method was evaluated using the blue applicability grade index (BAGI) with a score of 65. Finally, the developed method was used for the analysis of Alzheimer's disease and healthy control plasma to prove its applicability. Statistical analysis revealed significant changes in picolinic acid (PA), anthranilic acid (AA), 5 hydroxyindole-3-acetic acid (5-OH IAA), and quinolinic acid (QA) concentration levels. This could serve as the basis for future studies that will be conducted with a large cohort of patients.

9.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731707

ABSTRACT

Asthma is a prevalent respiratory disease. The present study is designed to determine whether gut microbiota-derived tryptophan metabolites alleviate allergic asthma inflammation in ovalbumin (OVA)-induced mice and explore the effect and potential mechanism therein. Asthma model mice were constructed by OVA treatment, and kynurenine (KYN), indole-3-lactic acid (ILA), in-dole-3-carbaldehyde (I3C), and indole acetic acid (IAA) were administered by intraperitoneal injection. The percent survival, weight and asthma symptom score of mice were recorded. The total immunoglobulin E and OVA-specific (s)IgE in the serum and the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) were detected by the corresponding ELISA kits. The composition of the gut microbiota and tryptophan-targeted metabolism in mouse feces were analyzed using 16S rRNA gene sequencing and targeted metabolomics, respectively. The four tryptophan metabolites improved the percent survival, weight and asthma symptoms of mice, and reduced the inflammatory cells in lung tissues, especially I3C. I3C and IAA significantly (p < 0.05) downregulated the levels of OVA-IgE and inflammatory cytokines. KYN was observed to help restore gut microbiota diversity. Additionally, I3C, KYN, and ILA increased the relative abundance of Anaeroplasma, Akkermansia, and Ruminococcus_1, respectively, which were connected with tryptophan metabolic pathways. IAA also enhanced capability of tryptophan metabolism by the gut microbiota, restoring tryptophan metabolism and increasing production of other tryptophan metabolites. These findings suggest that tryptophan metabolites may modulate asthma through the gut microbiota, offering potential benefits for clinical asthma management.

10.
J Inflamm Res ; 17: 3013-3029, 2024.
Article in English | MEDLINE | ID: mdl-38764492

ABSTRACT

Purpose: Neonatal Acute Respiratory Distress Syndrome (NARDS) is a severe respiratory crisis threatening neonatal life. We aim to identify changes in the lung-gut microbiota and lung-plasma tryptophan metabolites in NARDS neonates to provide a differentiated tool and aid in finding potential therapeutic targets. Patients and Methods: Lower respiratory secretions, faeces and plasma were collected from 50 neonates including 25 NARDS patients (10 patients with mild NARDS in the NARDS_M group and 15 patients with moderate-to-severe NARDS in the NARDS_S group) and 25 control patients screened based on gestational age, postnatal age and birth weight. Lower airway secretions and feces underwent 16S rRNA gene sequencing to understand the microbial communities in the lung and gut, while lower airway secretions and plasma underwent LC-MS analysis to understand tryptophan metabolites in the lung and blood. Correlation analyses were performed by comparing differences in microbiota and tryptophan metabolites between NARDS and control, NARDS_S and NARDS_M groups. Results: Significant changes in lung and gut microbiota as well as lung and plasma tryptophan metabolites were observed in NARDS neonates compared to controls. Proteobacteria and Bacteroidota were increased in the lungs of NARDS neonates, whereas Firmicutes, Streptococcus, and Rothia were reduced. Lactobacillus in the lungs decreased in NARDS_S neonates. Indole-3-carboxaldehyde decreased in the lungs of NARDS neonates, whereas levels of 3-hydroxykynurenine, indoleacetic acid, indolelactic acid, 3-indole propionic acid, indoxyl sulfate, kynurenine, and tryptophan decreased in the lungs of the NARDS_S neonates. Altered microbiota was significantly related to tryptophan metabolites, with changes in lung microbiota and tryptophan metabolites having better differentiated ability for NARDS diagnosis and grading compared to gut and plasma. Conclusion: Significant changes occurred in the lung-gut microbiota and lung-plasma tryptophan metabolites of NARDS neonates. Alterations in lung microbiota and tryptophan metabolites were better discriminatory for the diagnosis and grading of NARDS.

11.
Gut Microbes ; 16(1): 2347722, 2024.
Article in English | MEDLINE | ID: mdl-38706205

ABSTRACT

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Subject(s)
Gastrointestinal Microbiome , Indoles , Mice, Inbred C57BL , Probiotics , Receptors, Aryl Hydrocarbon , Wnt Signaling Pathway , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Humans , Probiotics/administration & dosage , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Indoles/metabolism , Indoles/pharmacology , Radiation-Protective Agents/pharmacology , Organoids/metabolism , Radiation Injuries/metabolism , Radiation Injuries/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/radiation effects , Intestines/microbiology , Intestines/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
12.
Arch Pharm Res ; 47(3): 288-299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38489148

ABSTRACT

Microbiota-derived catabolism of nutrients is closely related to ulcerative colitis (UC). The level of indole-3-acetic acid (IAA), a microbiota-dependent metabolite of tryptophan, was decreased significantly in the feces of UC patients. Thus supplementation with IAA could be a potential therapeutic method for ameliorating colitis. In this work, the protective effect of supplementation with IAA on dextran sulfate sodium (DSS)-induced colitis was evaluated, and the underlying mechanism was elucidated. The results indicated that the administration of IAA significantly relieved DSS-induced weight loss, reduced the disease activity index (DAI), restored colon length, alleviated intestinal injury, and improved the intestinal tight junction barrier. Furthermore, IAA inhibited intestinal inflammation by reducing the expression of proinflammatory cytokines and promoting the production of IL-10 and TGF-ß1. In addition, the ERK signaling pathway is an important mediator of various physiological processes including inflammatory responses and is closely associated with the expression of IL-10. Notably, IAA treatment induced the activation of extracellular signal-regulated kinase (ERK), which is involved in the progression of colitis, while the ERK inhibitor U0126 attenuated the beneficial effects of IAA. In summary, IAA could attenuate the clinical symptoms of colitis, and the ERK signaling pathway was involved in the underlying mechanism. Supplementation with IAA could be a potential option for preventing or ameliorating UC.


Subject(s)
Colitis, Ulcerative , Colitis , Indoleacetic Acids , Humans , Animals , Mice , Interleukin-10/metabolism , Dextran Sulfate/toxicity , Dextran Sulfate/metabolism , Colon/metabolism , Extracellular Signal-Regulated MAP Kinases/adverse effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Signal Transduction , Disease Models, Animal , Mice, Inbred C57BL
13.
Microbiome ; 12(1): 59, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504383

ABSTRACT

BACKGROUND: The host-microbiota interaction plays a crucial role in maintaining homeostasis and disease susceptibility, and microbial tryptophan metabolites are potent modulators of host physiology. However, whether and how these metabolites mediate host-microbiota interactions, particularly in terms of inter-microbial communication, remains unclear. RESULTS: Here, we have demonstrated that indole-3-lactic acid (ILA) is a key molecule produced by Lactobacillus in protecting against intestinal inflammation and correcting microbial dysbiosis. Specifically, Lactobacillus metabolizes tryptophan into ILA, thereby augmenting the expression of key bacterial enzymes implicated in tryptophan metabolism, leading to the synthesis of other indole derivatives including indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA). Notably, ILA, IPA, and IAA possess the ability to mitigate intestinal inflammation and modulate the gut microbiota in both DSS-induced and IL-10-/- spontaneous colitis models. ILA increases the abundance of tryptophan-metabolizing bacteria (e.g., Clostridium), as well as the mRNA expression of acyl-CoA dehydrogenase and indolelactate dehydrogenase in vivo and in vitro, resulting in an augmented production of IPA and IAA. Furthermore, a mutant strain of Lactobacillus fails to protect against inflammation and producing other derivatives. ILA-mediated microbial cross-feeding was microbiota-dependent and specifically enhanced indole derivatives production under conditions of dysbiosis induced by Citrobacter rodentium or DSS, but not of microbiota disruption with antibiotics. CONCLUSION: Taken together, we highlight mechanisms by which microbiome-host crosstalk cooperatively control intestinal homoeostasis through microbiota-derived indoles mediating the inter-microbial communication. These findings may contribute to the development of microbiota-derived metabolites or targeted "postbiotic" as potential interventions for the treatment or prevention of dysbiosis-driven diseases. Video Abstract.


Subject(s)
Microbiota , Tryptophan , Humans , Tryptophan/metabolism , Dysbiosis/microbiology , Indoles/pharmacology , Bacteria/genetics , Bacteria/metabolism , Inflammation
14.
J Neuroendocrinol ; 36(3): e13372, 2024 03.
Article in English | MEDLINE | ID: mdl-38361341

ABSTRACT

A good and accessible biomarker is of great clinical value in neuroendocrine tumor (NET) patients, especially considering its frequently indolent nature and long-term follow-up. Plasma chromogranin A (CgA) and 5-hydroxyindoleacetic acid (5-HIAA) are currently used as biomarkers in NET, but their sensitivity and specificity are restricted. 5-HIAA is the main metabolite of serotonin, an important neurotransmitter of the tryptophan pathway. The aim of this study is to estabish a sensitive and accurate method for the quantification of tryptophan pathway metabolites in plasma. We further aimed to evaluate its utility as a clinical tool in NET disease. We obtained plasma samples from NET patients and healthy controls recruited from the University Hospital of North Norway, Tromsø. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and eight metabolites of the tryptophan pathway were quantified. We included 130 NET patients (72/130 small intestinal [SI] NET, 35/130 pancreatic NET, 23/130 other origin) and 20 healthy controls. In the SI-NET group, 26/72 patients presented with symptoms of carcinoid syndrome (CS). We found that combining tryptophan metabolites into a serotonin/kynurenine pathway ratio improved diagnostic sensitivity (92.3%) and specificity (100%) in detecting CS patients from healthy controls compared with plasma 5-HIAA alone (sensitivity 84.6%/specificity 100%). Further, a clinical marker based on the combination of plasma serotonin, 5-HIAA, and 5OH-tryptophan, increased diagnostic capacity identifying NET patients with metastasized disease from healthy controls compared with singular plasma 5-HIAA, serotonin, or CgA. In addition, this marker was positive in 61% of curatively operated SI-NET patients compared with only 10% of healthy controls (p < .001). Our results indicate that simultaneous quantification of several tryptophan metabolites in plasma, using LC-MS/MS, may represent a clinically useful diagnostic tool in NET disease.


Subject(s)
Intestinal Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Stomach Neoplasms , Tryptophan , Humans , Chromatography, Liquid/methods , Tryptophan/analysis , Tryptophan/metabolism , Neuroendocrine Tumors/diagnosis , Serotonin/analysis , Tandem Mass Spectrometry/methods , Hydroxyindoleacetic Acid , Biomarkers
15.
Poult Sci ; 103(4): 103509, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387289

ABSTRACT

Light pollution is a potential risk factor for intestinal health. Tryptophan plays an important role in the inhibition of intestinal inflammation. However, the mechanism of tryptophan in alleviating intestinal inflammation caused by long photoperiod is still unclear. This study investigated the anti-inflammatory effect of dietary tryptophan on intestinal inflammatory damage induced by long photoperiod and its potential mechanism in broiler chickens. We found that dietary tryptophan mitigated long photoperiod-induced intestinal tissue inflammatory damage and inhibited the activation of Nucleotide-Binding Oligomerization Domain, Leucine-Rich Repeat and Pyrin Domain-Containing 3 inflammasome. Moreover, dietary tryptophan significantly increased the relative abundance of Faecalibacterium, Enterococcus, and Lachnospiraceae_NC2004_group were significantly decreased the relative abundance of Ruminococcus_torques_group and norank_f_UCG-010 under the condition of long photoperiod (P < 0.05). The results of tryptophan targeted metabolomics show that tryptophan significantly increased indole-3-acetic acid (IAA) and indole-3 lactic acid (ILA), and significantly decreased xanthurenic acid (XA) under long photoperiod (P < 0.05). In conclusion, the results indicated that dietary tryptophan alleviates intestinal inflammatory damage caused by long photoperiod via the inhibition of Nucleotide-Binding Oligomerization Domain, Leucine-Rich Repeat and Pyrin Domain-Containing 3 inflammasome activation, which was mediated by tryptophan metabolites. Therefore, tryptophan supplementation could be a promising way to protect the intestine health under the condition of long photoperiod.


Subject(s)
Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Chickens/physiology , Tryptophan/pharmacology , Tryptophan/metabolism , Leucine/pharmacology , Photoperiod , Inflammation/veterinary , Nucleotides/pharmacology
16.
Pharmacol Ther ; 256: 108605, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367866

ABSTRACT

Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.


Subject(s)
Gastrointestinal Microbiome , Hypersensitivity , Humans , Pharmaceutical Preparations , Fatty Acids, Volatile/physiology
17.
Cell Metab ; 36(3): 466-483.e7, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38266651

ABSTRACT

The brain and gut are intricately connected and respond to various stimuli. Stress-induced brain-gut communication is implicated in the pathogenesis and relapse of gut disorders. The mechanism that relays psychological stress to the intestinal epithelium, resulting in maladaptation, remains poorly understood. Here, we describe a stress-responsive brain-to-gut metabolic axis that impairs intestinal stem cell (ISC) lineage commitment. Psychological stress-triggered sympathetic output enriches gut commensal Lactobacillus murinus, increasing the production of indole-3-acetate (IAA), which contributes to a transferrable loss of intestinal secretory cells. Bacterial IAA disrupts ISC mitochondrial bioenergetics and thereby prevents secretory lineage commitment in a cell-intrinsic manner. Oral α-ketoglutarate supplementation bolsters ISC differentiation and confers resilience to stress-triggered intestinal epithelial injury. We confirm that fecal IAA is higher in patients with mental distress and is correlated with gut dysfunction. These findings uncover a microbe-mediated brain-gut pathway that could be therapeutically targeted for stress-driven gut-brain comorbidities.


Subject(s)
Gastrointestinal Microbiome , Humans , Cell Lineage , Stress, Psychological/microbiology , Acetates , Indoles/pharmacology
18.
Cell Host Microbe ; 32(2): 244-260.e11, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38198924

ABSTRACT

Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s). Early postnatal skin is dynamically populated by discrete subset of primed ILC2s driven by microbiota-dependent induction of thymic stromal lymphopoietin (TSLP) in keratinocytes. Specifically, the indole-3-aldehyde-producing tryptophan metabolic pathway, shared across Staphylococcus species, is involved in TSLP-mediated ILC2 priming. Furthermore, we demonstrate a critical contribution of the early postnatal S. lentus-TSLP-ILC2 priming axis in facilitating AD-like inflammation that is not replicated by later microbial exposure. Thus, our findings highlight the fundamental role of time-dependent neonatal microbial-skin crosstalk in shaping the threshold of innate type 2 immunity co-opted in adulthood.


Subject(s)
Dermatitis, Atopic , Thymic Stromal Lymphopoietin , Humans , Adult , Infant, Newborn , Immunity, Innate , Lymphocytes , Cytokines/metabolism , Skin/metabolism , Inflammation
19.
Biol Psychiatry ; 95(4): 348-360, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37918459

ABSTRACT

Nutrition and diet quality play key roles in preventing and slowing cognitive decline and have been linked to multiple brain disorders. This review compiles available evidence from preclinical studies and clinical trials on the impact of nutrition and interventions regarding major psychiatric conditions and some neurological disorders. We emphasize the potential role of diet-related microbiome alterations in these effects and highlight commonalities between various brain disorders related to the microbiome. Despite numerous studies shedding light on these findings, there are still gaps in our understanding due to the limited availability of definitive human trial data firmly establishing a causal link between a specific diet and microbially mediated brain functions and symptoms. The positive impact of certain diets on the microbiome and cognitive function is frequently ascribed with the anti-inflammatory effects of certain microbial metabolites or a reduction of proinflammatory microbial products. We also critically review recent research on pro- and prebiotics and nondietary interventions, particularly fecal microbiota transplantation. The recent focus on diet in relation to brain disorders could lead to improved treatment outcomes with combined dietary, pharmacological, and behavioral interventions.


Subject(s)
Brain Diseases , Gastrointestinal Microbiome , Mental Disorders , Humans , Diet , Brain , Brain Diseases/metabolism
20.
Br J Pharmacol ; 181(1): 162-179, 2024 01.
Article in English | MEDLINE | ID: mdl-37594378

ABSTRACT

BACKGROUND AND PURPOSE: Membranous nephropathy (MN) is an immune-mediated glomerular disease in adults. Antibody- and antigen-bonding mechanisms have been largely clarified, but the subepithelium immune complex deposition-mediated downstream molecular mechanisms are currently unresolved. Increasing evidence has suggested that gut microbiota contribute to MN pathogenesis. EXPERIMENTAL APPROACH: In this study, we identified alterations in faecal gut microbiota and serum metabolites that mediate an aryl hydrocarbon receptor (AhR) mechanism in cationic bovine serum albumin (CBSA)-induced MN rats and in patients with idiopathic MN (IMN). KEY RESULTS: Impaired renal function correlated with the relative abundance of reduced faecal probiotics, Lactobacillus and Bifidobacterium, and altered serum levels of tryptophan-produced indole derivatives (TPIDs) in MN rats. Further results showed that reduced relative abundance of five probiotics, namely Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus vaginalis, Lactobacillus reuteri and Bifidobacterium animalis, positively correlated with decreased levels of indole-3-pyruvic acid, indole-3-aldehyde and tryptamine and negatively correlated with increased levels of indole-3-lactic acid and indole-3-acetic acid in serum of MN rats. Altered five probiotics and five TPIDs also were observed in patients with IMN. Further studies showed that MN rats exhibited a significant increase in intrarenal mRNA expression of AhR and its target genes CYP1A1, CYP1A2 and CYP1B1, which were accompanied by protein expression of down-regulated cytoplasmic AhR, but up-regulated nuclear AhR, in MN rats and IMN patients. CONCLUSION AND IMPLICATIONS: Activation of the intrarenal AhR signalling pathway may involve five TPIDs. These data suggest that gut microbiota could influence MN through TPIDs that engage host receptors.


Subject(s)
Gastrointestinal Microbiome , Glomerulonephritis, Membranous , Indoles , Lactobacillus , Receptors, Aryl Hydrocarbon , Lactobacillus/physiology , Glomerulonephritis, Membranous/microbiology , Tryptophan/pharmacology , Indoles/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Humans , Animals , Rats , Male , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL