Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Adv Healthc Mater ; : e2400766, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007249

ABSTRACT

Mild photothermal therapy (PTT) has attracted attention for effectively avoiding the severe side effects associated with high-temperature tumor ablation. However, its progress is hindered by the limited availability of high-performance photothermal agents (PTAs) and the thermoresistance of cancer cells induced by heat shock reactions. Herein, this work proposes a new strategy to expand the library of high-performance organic small-molecule PTAs and utilize it to construct a multifunctional nano-theranostic platform. By incorporating additional acceptors and appropriate π-bridges, a diketopyrrolopyrrole-based dye BDB is developed, which exhibits strong absorption and bright fluorescence emission in the near-infrared (NIR) region. Subsequently, BDB is co-coated with the heat shock protein (HSP) inhibitor tanespimycin (17-AAG) using the functional amphiphilic polymers DSPE-Hyd-PEG2000-cRGD to form an all-in-one nanoplatform BAG NPs. As a result, BAG NPs can precisely target tumor tissue, guide the treatment process in real-time through NIR-II fluorescence/photoacoustic/photothermal imaging, and release 17-AAG on demand to enhance mild PTT. Additionally, the mild PTT has been demonstrated to induce immunogenic cell death (ICD) and activate a systemic anti-tumor immune response, thereby suppressing both primary and distant tumors. Overall, this study presents a multifunctional nanoplatform designed for precise mild PTT combined with immunotherapy for effective tumor treatment.

2.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915518

ABSTRACT

Epigenetic modifications to DNA and chromatin control oncogenic and tumor suppressive mechanisms in melanoma. EZH2, the catalytic component of the Polycomb repressive complex 2 (PRC2), which mediates methylation of lysine 27 on histone 3 (H3K27me3), can regulate both melanoma initiation and progression. We previously found that mutant Ezh2 Y641F interacts with the immune regulator Stat3 and together they affect anti-tumor immunity. However, given the numerous downstream targets and pathways affected by EZH2, many mechanisms that determine its oncogenic activity remain largely unexplored. Using genetically engineered mouse models we further investigated the role of pathways downstream of EZH2 in melanoma carcinogenesis and identified significant enrichment in several autophagy signatures, along with increased expression of autophagy regulators, such as Atg7. In this study, we investigated the effect of Atg7 on melanoma growth and tumor immunity within the context of an Ezh2 Y641F epigenetic state. We found that expression of Atg7 is largely dependent on Stat3 expression and that deletion of Atg7 slows down melanoma cell growth in vivo, but not in vitro. Atg7 deletion also results in increased CD8+ T cells and reduced myelosuppressive cell infiltration in the tumor microenvironment, suggesting a strong immune system contribution in the role of Atg7 in melanoma progression. These findings highlight the complex interplay between genetic mutations, epigenetic regulators, and autophagy in shaping tumor immunity in melanoma.

3.
Biochem Pharmacol ; 226: 116393, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942088

ABSTRACT

The incidence of colorectal cancer (CRC) in patients under 50 has been increasing over the past several decades. The factors underlying the increase in early onset colorectal cancer (EOCRC) are not entirely clear, although several genetic and clinical differences with late onset colorectal cancer (LOCRC) have been noted. EOCRC cases are often diagnosed at a more advanced stage, raising the possibility that these cancers progress more rapidly than LOCRC cases. The impact of age on cancer progression is an intriguing topic and numerous lines of research have found that a young tissue environment is often more promotional. In fact, a less hospitable promotional tissue environment in older individuals may offset the increased cancer risk associated with the increased mutational load associated with age. Here we address how youthful aspects of angiogenesis, the tumor immune response, and the oxidative stress response may contribute to the rapid progression of EOCRC. Understanding the factors promoting EOCRC may provide insight into why EOCRC cases are increasing.

4.
Int Immunopharmacol ; 137: 112537, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38909493

ABSTRACT

Colorectal cancer (CRC) has been one of the most common malignancies worldwide. Despite the advances in current therapies, the mortality rate of CRC remains high. Among them, immunotherapy has achieved satisfactory results in some CRC patients, however, how to expand the use of immunotherapy in CRC patients remains an urgent challenge. Surprisingly, the intratumoral microbiota has been found in multiple tumor tissues, including CRC. It has been demonstrated that the intratumoral microbiota is associated with the progression and treatment of CRC, and is able to enhance or decrease anti-tumor immune responses via different mechanisms as well as influence the immunotherapy efficacy, providing new potential therapeutic targets for CRC immunotherapy. In this review, we focus on the characteristics of the intratumoral microbiota, its roles in the genesis and development of CRC, its modulation of anti-tumor immune responses and immunotherapy, and propose potential applications of the intratumoral microbiota in CRC immunotherapy. Additionally, we propose possible directions for future research on the intratumoral microbiota related to CRC immunotherapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Colorectal Neoplasms/microbiology , Immunotherapy/methods , Animals , Microbiota/immunology , Tumor Microenvironment/immunology , Gastrointestinal Microbiome/immunology
5.
Small ; : e2312141, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801318

ABSTRACT

Reactive oxygen species (ROS)-mediated emerging treatments exhibit unique advantages in cancer therapy in recent years. While the efficacy of ROS-involved tumor therapy is greatly restricted by complex tumor microenvironment (TME). Herein, a dual-metal CaO2@CDs-Fe (CCF) nanosphere, with TME response and regulation capabilities, are proposed to improve ROS lethal power by a multiple cascade synergistic therapeutic strategy with domino effect. In response to weak acidic TME, CCF will decompose, accompanied with intracellular Ca2+ upregulated and abundant H2O2 and O2 produced to reverse antitherapeutic TME. Then the exposed CF cores can act as both Fenton agent and sonosensitizer to generate excessive ROS in the regulated TME for enhanced synergistic CDT/SDT. In combination with calcium overloading, the augmented ROS induced oxidative stress will cause more severe mitochondrial damage and cellular apoptosis. Furthermore, CCF can also reduce GPX4 expression and enlarge the lipid peroxidation, causing ferroptosis and apoptosis in parallel. These signals of damage will finally initiate damage-associated molecular patterns to activate immune response and to realize excellent antitumor effect. This outstanding domino ROS/calcium loading synergistic effect endows CCF with excellent anticancer effect to efficiently eliminate tumor by apoptosis/ferroptosis/ICD both in vitro and in vivo.

6.
Adv Sci (Weinh) ; : e2402465, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728587

ABSTRACT

Aggressive nature of colon cancer and current imprecise therapeutic scenarios simulate the development of precise and effective treatment strategies. To achieve this, a tumor environment-activated photosensitized biomimetic nanoplatform (PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM) is fabricated by encapsulating metal-organic framework loaded with developed photosensitizer PEG2000-SiNcTI-Ph and immunoadjuvant CpG oligodeoxynucleotide within fusion cell membrane expressing programmed death protein 1 (PD-1) and cluster of differentiation 47 (CD47). By stumbling across, systematic evaluation, and deciphering with quantum chemical calculations, a unique attribute of tumor environment (low pH plus high concentrations of adenosine 5'-triphosphate (ATP))-activated photodynamic effect sensitized by long-wavelength photons is validated for PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM, advancing the precision of cancer therapy. Moreover, PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM evades immune surveillance to target CT26 colon tumors in mice mediated by CD47/signal regulatory proteins α (SIRPα) interaction and PD-1/programmed death ligand 1 (PD-L1) interaction, respectively. Tumor environment-activated photodynamic therapy realized by PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM induces immunogenic cell death (ICD) to elicit anti-tumor immune response, which is empowered by enhanced dendritic cells (DC) uptake of CpG and PD-L1 blockade contributed by the nanoplatform. The photodynamic immunotherapy efficiently combats primary and distant CT26 tumors, and additionally generates immune memory to inhibit tumor recurrence and metastasis. The nanoplatform developed here provides insights for the development of precise cancer therapeutic strategies.

7.
Front Immunol ; 15: 1390263, 2024.
Article in English | MEDLINE | ID: mdl-38799433

ABSTRACT

Cancer immunotherapy, such as immune checkpoint blockade (ICB), has emerged as a groundbreaking approach for effective cancer treatment. Despite its considerable potential, clinical studies have indicated that the current response rate to cancer immunotherapy is suboptimal, primarily attributed to low immunogenicity in certain types of malignant tumors. Immunogenic cell death (ICD) represents a form of regulated cell death (RCD) capable of enhancing tumor immunogenicity and activating tumor-specific innate and adaptive immune responses in immunocompetent hosts. Therefore, gaining a deeper understanding of ICD and its evolution is crucial for developing more effective cancer therapeutic strategies. This review focuses exclusively on both historical and recent discoveries related to ICD modes and their mechanistic insights, particularly within the context of cancer immunotherapy. Our recent findings are also highlighted, revealing a mode of ICD induction facilitated by atypical interferon (IFN)-stimulated genes (ISGs), including polo-like kinase 2 (PLK2), during hyperactive type I IFN signaling. The review concludes by discussing the therapeutic potential of ICD, with special attention to its relevance in both preclinical and clinical settings within the field of cancer immunotherapy.


Subject(s)
Immunogenic Cell Death , Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Immunogenic Cell Death/drug effects , Animals , Signal Transduction , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
8.
Cancer Lett ; 588: 216766, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38408603

ABSTRACT

The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Neoplasms/therapy , Neoplasms/drug therapy , Immunotherapy , Mutation , Immunity, Innate , Tumor Microenvironment
9.
Small ; 20(14): e2306402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37992239

ABSTRACT

Photodynamic therapy (PDT) is extensively investigated for tumor therapy in the clinic. However, the efficacy of PDT is severely limited by the tissue penetrability of light, short effective half-life and radius of reactive oxygen species (ROS), and the weak immunostimulatory effect. In this study, a glutathione (GSH)-activatable nano-photosensitizer is developed to load with arachidonic acid (AA) and camouflage by erythrocyte membrane, which serves as a laser-ignited lipid peroxidation nanoamplifier (MAR). The photosensitive effect of MAR is recovered accompanied by the degradation in the tumor microenvironment and triggers the peroxidation of AA upon laser excitation. Interestingly, it aggravates the propagation of ferroptosis among cancer cells by driving the continuous lipid peroxidation chain reactions with the participation of the degradation products, ferrous ions (Fe2+), and AA. Consequently, even the deep-seated tumor cells without illumination also undergo ferroptosis owing to the propagation of ferroptotic signal. Moreover, the residual tumor cells undergoing ferroptosis still maintain high immunogenicity after PDT, thus continuously triggering sufficient tumor-associated antigens (TAAs) release to remarkably promote the anti-tumor immune response. Therefore, this study will provide a novel "all-in-one" nano-photosensitizer that not only amplifies the damaging effect and expands the effective range of PDT but also improves the immunostimulatory effect after PDT.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Lipid Peroxidation , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Cell Line, Tumor
10.
Biomaterials ; 305: 122435, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38150771

ABSTRACT

Hepatocellular carcinoma (HCC) has an insidious onset and high malignancy. Most patients have progressed to intermediate and advanced stages by the time of diagnosis, and the long-term efficacy of traditional treatments is not satisfactory. Immunotherapy has shown great promise in the treatment of HCC in recent years; however, the low immunogenicity and severe immunosuppressive tumor microenvironment result in a low response rate to immunotherapy in HCC patients. Therefore, it is of great significance to improve the immunogenicity of HCC and thus enhance its sensitivity to immunotherapy. Here, we prepared the boronophenylalanine-modified dual drug-loaded polydopamine nanoparticles by a facile method. This system used boronophenylalanine-modified polydopamine nanoparticles as a delivery vehicle and photothermal material for the chemotherapeutic drug doxorubicin and the immune agonist CpG oligodeoxynucleotides (CpG-ODN), with both active targeting and lysosomal escape functions. The cancer cells are rapidly killed by photothermal treatment, and then chemotherapy is used to further kill cancer cells that are inadequately treated by photothermal treatment. The combination of photothermal-chemotherapy synergistically induces the release of relevant antigens from tumor cells, thus initiating anti-tumor immunity; and then cooperates with CpG-ODN to trigger a powerful anti-tumor immune memory effect, potently and durably inhibiting HCC recurrence.


Subject(s)
Carcinoma, Hepatocellular , Indoles , Liver Neoplasms , Nanoparticles , Polymers , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Doxorubicin/therapeutic use , Drug Carriers/therapeutic use , Phototherapy , Immunity , Tumor Microenvironment , Cell Line, Tumor
11.
Front Oncol ; 13: 1308681, 2023.
Article in English | MEDLINE | ID: mdl-38125944

ABSTRACT

The activation of anti-tumor immunity is critical in treating cancers. Recent studies indicate that several chemotherapy agents can stimulate anti-tumor immunity by inducing immunogenic cell death and durably eradicate tumors. This suggests that immunogenic chemotherapy holds great potential for improving response rates. However, chemotherapy in practice has only had limited success in inducing long-term survival or cure of cancers when used either alone or in combination with immunotherapy. We think that this is because the importance of dose, schedule, and tumor model dependence of chemotherapy-activated anti-tumor immunity is under-appreciated. Here, we review immune modulation function of representative chemotherapy agents and propose a model of immunogenic chemotherapy-induced long-lasting responses that rely on synergetic interaction between killing tumor cells and inducing anti-tumor immunity. We comb through several chemotherapy treatment schedules, and identify the needs for chemotherapy dose and schedule optimization and combination therapy with immunotherapy when chemotherapy dosage or immune responsiveness is too low. We further review tumor cell intrinsic factors that affect the optimal chemotherapy dose and schedule. Lastly, we review the biomarkers indicating responsiveness to chemotherapy and/or immunotherapy treatments. A deep understanding of how chemotherapy activates anti-tumor immunity and how to monitor its responsiveness can lead to the development of more effective chemotherapy or chemo-immunotherapy, thereby improving the efficacy of cancer treatment.

12.
Front Immunol ; 14: 1274223, 2023.
Article in English | MEDLINE | ID: mdl-37881428

ABSTRACT

Introduction: Lung adenocarcinoma (LUAD) therapies are plagued by insufficient immune infiltration and suboptimal immune responses in patients, which are closely associated with the hyperactive Wnt/ß-catenin pathway. Suppressing this signaling holds considerable promise as a potential tumor therapy for LUAD, but Wnt suppressor development is hindered by concerns regarding toxicity and adverse effects due to insufficient targeting of tumors. Methods: We have synthesized a tumor-specific biomimetic Wnt pathway suppressor, namely CM-CA, by encapsulating carnosic acid within Lewis lung carcinoma (LLC) cell membranes. It possesses nano-size, allowing for a straightforward preparation process, and exhibits the ability to selectively target the Wnt/ß-catenin pathway in lung adenocarcinoma cells. To evaluate its in vivo efficacy, we utilized the LLC Lewis homograft model, and further validated its mechanism of action through immunohistochemistry staining and transcriptome sequencing analyses. Results: The findings from the animal experiments demonstrated that CM-CA effectively suppressed the Wnt/ß-catenin signaling pathway and impeded cellular proliferation, leading to notable tumor growth inhibition in a biologically benign manner. Transcriptome sequencing analyses revealed that CM-CA promoted T cell infiltration and bolstered the immune response within tumor tissues. Conclusion: The utilization of CM-CA presents a novel and auspicious approach to achieve tumor suppression and augment the therapeutic response rate in LUAD, while also offering a strategy for the development of Wnt/ß-catenin inhibitors with biosafety profile.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Humans , beta Catenin/metabolism , Cell Membrane/metabolism , Immunity , Transcription Factors , Wnt Signaling Pathway , Mice
13.
Cell Rep ; 42(10): 113220, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37804509

ABSTRACT

A high-sugar diet induces lifestyle-associated metabolic diseases, such as obesity and diabetes, which may underlie the pro-tumor effects of a high-sugar diet. We supply GL261 syngeneic glioblastoma (GBM) mice with a short-term high-glucose drink (HGD) and find an increased survival rate with no evidence of metabolic disease. Modulation of the gut microbiota through HGD supplementation is critical for enhancing the anti-tumor immune response. Single-cell RNA sequencing shows that gut microbiota modulation by HGD supplementation increases the T cell-mediated anti-tumor immune response in GBM mice. We find that the cytotoxic CD4+ T cell population in GBM is increased due to synergy with anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint inhibitors, but this effect depends upon HGD supplementation. Thus, we determine that HGD supplementation enhances anti-tumor immune responses in GBM mice through gut microbiota modulation and suggest that the role of HGD supplementation in GBM should be re-examined.


Subject(s)
Brain Neoplasms , Gastrointestinal Microbiome , Glioblastoma , Mice , Animals , Glioblastoma/metabolism , Brain Neoplasms/metabolism , Glucose , Immunity , Dietary Supplements , Sugars
14.
Front Oncol ; 13: 1207081, 2023.
Article in English | MEDLINE | ID: mdl-37746262

ABSTRACT

Background: 2',5'-oligoadenylate synthetase 1 (OAS1), has been reported as a tumor driver gene in breast carcinoma and pancreatic carcinoma. However, the role of OAS1 in most tumors has not been reported. Methods: The original data of 35 tumor types were down load from the TCGA (The Cancer Genome Atlas) database and Human Protein Atlas (HPA) database. TIMER2, Kmplot, UALCAN, and TISIDB tools were used to investigate the expression and function of OAS1, and the role of OAS1 in prognosis, diagnostic value, and immune characteristics of pan-cancer. LUAD and PRAD cell lines, A549, H1975, PC-3 and C4-2 were utilized to perform cell function tests. Results: OAS1 expression was up-regulated in 12 tumor types and down-regulated in 2 tumor types. High OAS1 expression was correlated with poor prognosis in 6 tumor types, while high OAS1 expression was correlated with good prognosis in 2 tumor types. OAS1 was correlated with molecular subtypes in 8 tumor types and immune subtypes in 12 tumor types. OAS1 was positively associated with the expression of numerous immune checkpoint genes and tumor mutational burden (TMB). OAS1 had potential diagnostic value in 15 tumor types. Silence of OAS1 significantly inhibited the cell proliferation ability, and promoted G2/M cell cycle arrest of LUAD and PRAD cells. Meanwhile, silence of OAS1 enhanced cisplatin-induced apoptosis of LUAD and PRAD cells, but weakened cell migration. Conclusion: This pan-cancer study suggests that OAS1can be used as a molecular biomarker for prognosis in pan-cancer and may play an important role in tumor immune response.

15.
Biomedicines ; 11(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37626741

ABSTRACT

Advanced melanoma is an aggressive form of skin cancer characterized by low survival rates. Less than 50% of advanced melanoma patients respond to current therapies, and of those patients that do respond, many present with tumor recurrence due to resistance. The immunosuppressive tumor-immune microenvironment (TIME) remains a major obstacle in melanoma therapy. Adjuvant treatment modalities that enhance anti-tumor immune cell function are associated with improved patient response. One potential mechanism to stimulate the anti-tumor immune response is by inducing immunogenic cell death (ICD) in tumors. ICD leads to the release of damage-associated molecular patterns within the TIME, subsequently promoting antigen presentation and anti-tumor immunity. This review summarizes relevant concepts and mechanisms underlying ICD and introduces the potential of non-ablative low-intensity focused ultrasound (LOFU) as an immune-priming therapy that can be combined with ICD-inducing focal ablative therapies to promote an anti-melanoma immune response.

16.
Cancer Radiother ; 27(6-7): 653-658, 2023 Sep.
Article in French | MEDLINE | ID: mdl-37573193

ABSTRACT

Surgery is the standard treatment for operable patients with stage I non-small cell lung cancer (NSCLC) (T1-T2aN0M0). Stereotactic body radiotherapy (SBRT) is the treatment of choice for non-operable patients, and its positioning for operable patients remains to be clarified. The pattern of recurrence after management of stage I NSCLC is dominated by the risk of distant recurrence, this constituting the rationale for the adjunction of systemic treatment, and especially check point inhibitor (CPI), in combination with surgery or SBRT for patients with high risk features. While the benefit of postoperative CPI on the micro-metastatic disease is logically considered within the framework of a simply additive effect of both therapeutic modalities, it is reasonable to consider a synergistic effect of both CPI and SBRT. Given the role of tumor draining nodes in the development of an anti-tumor immune response, a "tumor-draining node sparing" strategy enabled by SBRT could therefore be of major interest in combination with CPI. Pending confirmation of the role of CPI in combination with RTS for the management of stage I NSCLC, we thus discuss in this review the theoretical advantages that this therapeutic strategy could have compared to a surgical strategy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Radiation Oncologists , Immunotherapy , Neoplasm Staging
17.
Mol Cancer ; 22(1): 121, 2023 07 29.
Article in English | MEDLINE | ID: mdl-37516849

ABSTRACT

Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.


Subject(s)
Interleukin-2 , Neoplasms , Humans , Interleukin-2/genetics , Interleukin-2/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Carcinogenesis , Immunotherapy , Cell Cycle , Tumor Microenvironment
18.
Expert Opin Investig Drugs ; 32(6): 479-493, 2023.
Article in English | MEDLINE | ID: mdl-37394970

ABSTRACT

INTRODUCTION: Diffuse large B-cell lymphoma (DLBCL) is an aggressive and clinically heterogeneous malignancy originating from B-cells with up to 40% of patients experiencing primary refractory disease or relapse after first-line treatment. However, the past 5 years have seen a flurry of new drug approvals for DLBCL anchored upon new immune therapies, including chimeric antigen receptor (CAR) T-cells and antibody-based therapies. AREAS COVERED: This article summarizes recent advances in the treatment of DLBCL, including in the first line and relapsed and refractory setting (second-line and beyond). A literature search was conducted for publications relevant to the immunotherapeutic approach to DLBCL from 2000 through March 2023 within PubMed and articles were reviewed. The search terms were immunotherapy, monoclonal antibodies, chimeric antigen receptor modified T-cell (CAR-T), and classification of DLBCL. Relevant clinical trials and pre-clinical studies exploring the strengths and weaknesses of current immune therapies against DLBCL were chosen. We additionally explored how intrinsic differences amongst DLBCL subtype biology and endogenous host immune recruitment contribute to variable therapeutic efficacy. EXPERT OPINION: Future treatments will minimize chemotherapy exposure and be chosen by underlying tumor biology, paving the way for the promise of chemotherapeutic free regimens and improved outcomes for poor-risk subgroups.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Immunotherapy , Antibodies, Monoclonal , Immunotherapy, Adoptive
19.
Front Microbiol ; 14: 1188526, 2023.
Article in English | MEDLINE | ID: mdl-37440883

ABSTRACT

Viruses and tumors are two pathologies that negatively impact human health, but what occurs when a virus encounters a tumor? A global consensus among cancer patients suggests that surgical resection, chemotherapy, radiotherapy, and other methods are the primary means to combat cancer. However, with the innovation and development of biomedical technology, tumor biotherapy (immunotherapy, molecular targeted therapy, gene therapy, oncolytic virus therapy, etc.) has emerged as an alternative treatment for malignant tumors. Oncolytic viruses possess numerous anti-tumor properties, such as directly lysing tumor cells, activating anti-tumor immune responses, and improving the tumor microenvironment. Compared to traditional immunotherapy, oncolytic virus therapy offers advantages including high killing efficiency, precise targeting, and minimal side effects. Although oncolytic virus (OV) therapy was introduced as a novel approach to tumor treatment in the 19th century, its efficacy was suboptimal, limiting its widespread application. However, since the U.S. Food and Drug Administration (FDA) approved the first OV therapy drug, T-VEC, in 2015, interest in OV has grown significantly. In recent years, oncolytic virus therapy has shown increasingly promising application prospects and has become a major research focus in the field of cancer treatment. This article reviews the development, classification, and research progress of oncolytic viruses, as well as their mechanisms of action, therapeutic methods, and routes of administration.

SELECTION OF CITATIONS
SEARCH DETAIL
...