Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Methods Mol Biol ; 2777: 91-98, 2024.
Article in English | MEDLINE | ID: mdl-38478338

ABSTRACT

Cancer stem cells (CSCs) represent a subpopulation of tumor cells that are thought to be responsible for therapy resistance, recurrence, and metastasis through their capacity to self-renew and differentiate into heterogeneous downstream lineages of cancer cells. Understanding the features of CSCs is crucial for managing cancer disease and establishing potential targeted therapeutics. Tumor sphere formation assay is a widely used in vitro method that selects and enriches the CSC subpopulation from the total population of cancer cells, based on their inherent ability to grow and clonally expand in serum-free and nonadherent culture conditions. Here we provide a detailed methodology to generate and propagate spheres from isolated cell suspensions of tumor tissues and cell lines using a semisolid MatrigelTM-based three-dimensional (3D) culture system.


Subject(s)
Carcinogenesis , Spheroids, Cellular , Humans , Cell Line, Tumor , Carcinogenesis/pathology , Neoplastic Stem Cells/metabolism
2.
J Cancer Res Clin Oncol ; 150(3): 155, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526702

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) features high aggressiveness, metastasis rate, drug resistance as well as poor prognosis. Osteopontin (OPN) is a key protein in the process of osteogenesis and has emerged as a new tumor marker in recent years. METHODS: Cell viability was tested with the CCK-8 kit. Transwell and wound healing were adopted to test cell invasive and migratory abilities. Tumor sphere formation was detected by tumor sphere formation assay. Human umbilical vein endothelial cell (HUVEC) tube formation assay was used to measure the angiogenesis of tumor cells. Western blot was applied for the estimation of the expression of cancer stem cell markers, angiogenesis-, signaling pathway-related proteins as well as OPN. Bioinformatics tools predicted OPN expression in breast cancer tissues. The levels of oxidative stress-related markers were assessed with ELISA. Following the overexpression of OPN in MD-MB-436 cells and the addition of the PI3K/AKT/mTOR pathway inhibitor LY294002, the aforementioned functional experiments were implemented again to investigate the mechanism. Finally, in vivo experiments of tumor-bearing mice were performed for further verification. RESULTS: The proliferative, invasive, migratory and tumor sphere formation capabilities as well as angiogenesis of TNBC cells were conspicuously increased in contrast to non-TNBC cell lines. OPN expression in TNBC tissues and cells was dramatically enhanced. OPN upregulation significantly elevated cell proliferative, invasive and migratory capabilities as well as tumor sphere formation and angiogenesis. The mechanism might be achieved by activating PI3K/AKT/mTOR signaling to regulate glutathione peroxidase 4 (GPX4)-mediated anti-lipid peroxidation. CONCLUSION: OPN promoted tumor sphere formation and angiogenesis in TNBC by activating the PI3K/AKT/mTOR pathway to regulate GPX4-mediated anti-lipid peroxidation levels.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Osteopontin/metabolism , Cell Line, Tumor , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Cell Movement/physiology
3.
Article in English | MEDLINE | ID: mdl-38555594

ABSTRACT

5-Fluorouracil (5-FU) is a commonly used anticancer drug for colorectal cancer (CRC). Therefore, it is crucial to elucidate the mechanisms that contribute to 5-FU resistance. We established an acquired 5-FU resistant cell line, HCT116RF10, derived from CRC cells and investigated its energy metabolism as well as the underlying mechanism of 5-FU resistance. We examined the sensitivity to 5-FU and the formation of tumor spheres in parental HCT116 cells and 5-FU-resistant HCT116RF10 cells under 3D culture conditions at high-glucose (HG 25 mM) and low-glucose (LG 5.5 mM) concentrations. These results suggested that the tumor spheres of parental HCT116 cells displayed higher sensitivity to 5-FU under LG conditions than under HG conditions. HCT116RF10 tumor spheres exhibited comparable sensitivity to 5-FU under HG and LG conditions. Furthermore, under HG conditions, there was a marked decrease in extracellular lactate in the HCT116RF10 tumor sphere compared to that in the LG tumor sphere. Similarly, HCT116 tumor spheres showed decreased extracellular lactate levels under LG conditions compared to those grown under HG conditions. Moreover, the evidence reveals that the tumor spheres of HCT116RF10 and HCT116 cells exhibit disparate dependencies on energy metabolism, glycolysis, and mitochondrial respiration under both HG and LG conditions. These results have important clinical implications for overcoming 5-FU resistance and enhancing antitumor treatment strategies.

4.
Discov Oncol ; 14(1): 156, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37639070

ABSTRACT

BACKGROUND: 3D cancer stem cell (CSC) cultures are widely used as in vitro tumor models. In this study, we determined the effects of enriching HCT116 tumor spheres initially cultured in serum-free medium with different concentrations of serum, focusing on the effect of microserum environment stimulation on extraction and biological function of colorectal cancer stem cells (CCSCs). METHODS: CCSCs were enriched in standard serum-free medium and serum-free medium with different concentrations of serum for 1 week. The expression of CSC-associated markers in CCSCs, and the presence and relative proportion of CSCs (CD133/CD44 cell sorting) were then determined to elucidate the effect of the microserum environment on the preservation of CSC-related features. Further, the tumorigenic capacity of CCSCs was evaluated in an immunodeficiency mouse model. RESULTS: Our data indicated that a significantly greater number of spheres with a greater size range and high viability without drastic alteration in biological and structural features, which maintained self-renewal potential after sequential passages were formed after serum supplementation. Real-time analysis showed that both serum spheres and serum-free spheres displayed similar expression patterns for key stemness genes. Serum spheres showed higher expression of the CSC surface markers CD133 and CD44 than did CSCs spheres cultured in serum-free medium. Adherent cultures in complete medium could adapt to the serum-containing microenvironment faster and showed higher proliferation ability. The addition of serum induced EMT and promoted the migration and invasion of serum globular cells. Compared with serum-free cells and adherent cells, serum spheres showed higher tumor initiation ability. CONCLUSIONS: Microserum environment stimulation could be an effective strategy for reliable enrichment of intact CCSCs, and a more efficient CSC enrichment method.

5.
Glycoconj J ; 40(1): 47-67, 2023 02.
Article in English | MEDLINE | ID: mdl-36522582

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.


Subject(s)
Antineoplastic Agents , Autophagic Cell Death , Dioclea , Glioma , Humans , Dioclea/chemistry , Caspase 8/metabolism , Caspase 8/pharmacology , Caspase 8/therapeutic use , Lectins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Proto-Oncogene Proteins c-akt/therapeutic use , Cell Line, Tumor , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Cell Movement , Autophagy , Antineoplastic Agents/pharmacology , Cell Proliferation , Apoptosis
6.
Biomedicines ; 10(8)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-36009455

ABSTRACT

Breast cancer has a high risk of recurrence and distant metastasis after remission. Controlling distant metastasis is important for reducing breast cancer mortality, but accomplishing this goal remains elusive. In this study, we investigated the molecular pathways underlying metastasis using cells that mimic the breast cancer distant metastasis process. HCC1143 breast cancer cells were cultured under two-dimensional (2D)-adherent, tumor sphere (TS), and reattached (ReA) culture conditions to mimic primary tumors, circulating tumor cells, and metastasized tumors, respectively. ReA cells demonstrated increased TS formation and enhanced invasion capacity compared to the original 2D-cultured parental cells. In addition, ReA cells had a higher frequency of ESA+CD44+CD24- population, which represents a stem-cell-like cell population. RNA sequencing identified the cholesterol synthesis pathway as one of the most significantly increased pathways in TS and ReA cells compared to parental cells, which was verified by measuring intracellular cholesterol levels. Furthermore, the pharmacological inhibition of the cholesterol synthesis pathway decreased the ability of cancer cells to form TSs and invade. Our results suggest that the cholesterol synthesis pathway plays an important role in the distant metastasis of breast cancer cells by augmenting TS formation and invasion capacity.

7.
Nutrients ; 14(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35565854

ABSTRACT

Previously, the in vitro growth of cancer stem cells in the form of tumor spheres from five different brain cancer cell lines was found to be methionine-dependent. As this earlier work indicated that ALDH1L2, a folate-dependent mitochondria aldehyde dehydrogenase gene, is upregulated in glioblastoma stem cells, we invalidated this gene using CRISPR-cas 9 technique in this present work. We reported here that this invalidation was effective in U251 glioblastoma cells, and no cas9 off target site could be detected by genome sequencing of the two independent knockout targeting either exon I or exon III. The knockout of ALDH1L2 gene in U251 cells rendered the growth of the cancer stem cells of U251 methionine independent. In addition, a much higher ROS (reactive oxygen radicals) level can be detected in the knockout cells compared to the wild type cells. Our evidence here linked the excessive ROS level of the knockout cells to reduced total cellular NADPH. Our evidence suggested also that the cause of the slower growth of the knockout turmor sphere may be related to its partial differentiation.


Subject(s)
Glioblastoma , Cell Line, Tumor , Glioblastoma/metabolism , Humans , Methionine/metabolism , Neoplastic Stem Cells/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
8.
Front Biosci (Landmark Ed) ; 27(1): 18, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35090323

ABSTRACT

AIMS: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and heterogeneous cancer with a poor prognosis. At present, there is no optimal treatment except for surgical resection, and recurrence after resection will lead to death due to multidrug resistance. Changes in the redox signal have been found to be closely related to the growth and drug resistance of tumor cells. Therefore, the purpose of this study was to screen small molecule compounds from the redox library to find a drug for anti-ICC and to explore its downstream mechanism. MATERIAL AND METHODS: Tumor clone and sphere formation of ICC cell lines, as well as mouse ICC organoid proliferation assays were utilized to screen the candidate drug in the Redox library. Western blotting, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), as well as cell apoptosis and cell cycle flow cytometry assays were used to explore the mechanism. RESULTS: We found that Hinokitiol was a candidate drug through inhibition of tumor clone and sphere formation, and the expression of cancer stem cell (CSC)-related genes. Furthermore, Hinokitiol significantly inhibited the proliferation of ICC cells by downregulating the ERK and P38 pathways. In addition, the combination of Hinokitiol and Palbociclib showed a significant inhibitory effect on human ICC cells and mouse ICC organoids. CONCLUSION: Hinokitiol may have the potential to be developed as a clinical therapeutic drug for ICC treatment.


Subject(s)
Antineoplastic Agents , Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Antineoplastic Agents/therapeutic use , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Mice , Monoterpenes , Oxidation-Reduction , Tropolone/analogs & derivatives
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120634, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34836811

ABSTRACT

Hypoxia plays an important role in cancer progression, which is a characteristic feature of the tumor micro-environment and reflects the invasiveness of tumor cells. Nitroreductase (NTR) is overexpressed in hypoxic tumors, which making it an efficient target for detecting the hypoxic state in tumor. In this work, a new type of nitro-based fluorescent probe, named HNT-NTR, has been proposed, HNT-NTR could detect specifically and rapidly the NTR degree, which reflects the level of hypoxia in bidimensional (2D) tumor cells, three-dimensional (3D) tumor spheres and even the real tumors in vivo without biological toxicity. Most importantly, according to the research, HNT-NTR even could distinguish tumor cells from other normal cells in vivo and reflect the invasiveness of tumor cells by the near-infrared fluorescence intensity, which provides a new way of clinical pathologic diagnosis. All in all, HNT-NTR not only is proven to be an ideal probe for detecting solid tumors in vivo, but also has great potential to distinguish if cells are benign or malignant and even guide therapeutic applications in the clinic.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Microscopy, Fluorescence , Neoplasms/diagnostic imaging , Nitroreductases , Optical Imaging , Tumor Microenvironment
10.
Integr Cancer Ther ; 19: 1534735420969809, 2020.
Article in English | MEDLINE | ID: mdl-33176517

ABSTRACT

In this study, we evaluated the antiproliferative and antimetastatic effects of the Pleurotus highking mushroom on the human triple-negative breast cancer cell lines MDA-MB-231 and HCC-1937 and attempted to elucidate the underlying molecular mechanisms. The antiproliferative effects of P. highking purified fraction-III (PEF-III) were investigated using colony formation and MTS assays. The antimigratory effects of PEF-III were determined by wound healing, transwell migration, and matrigel cell invasion assays. The protein expression levels were evaluated using Western blot analysis. The effect of PEF-III on tumor-sphere formation was examined in a 3D sphere-forming medium, and the mRNA expressions of proliferation- and migration-related genes in the cells from the tumor spheres were determined using RT-qPCR. PEF-III treatment caused a potent and concentration-dependent decrease in the numbers of colonies and viable cells. It also remarkably suppressed the migratory ability of the cells. Mechanistically, PEF-III treatment reduced the expression of pAkt, matrix metallopeptidase-9 (MMP-9), and vimentin. Furthermore, PEF-III reduced the number and size of the tumor spheres in the 3D culture system. It also significantly reduced the mRNA expression of Ki-67, MMP-9, and vimentin in the PEF-III-treated tumor-sphere cells. PEF-III exerted promising antiproliferative and antimigratory effects in triple-negative breast cancer cell lines by suppressing Akt signaling. Therefore, P. highking mushrooms may be considered a potential source for the development of potent anticancer drug(s) for the treatment of breast cancer.


Subject(s)
Agaricales , Breast Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Pleurotus , Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms/drug therapy
11.
Front Cell Dev Biol ; 8: 804, 2020.
Article in English | MEDLINE | ID: mdl-32984319

ABSTRACT

Several similarities between the embryo development and the cancer process suggest the para-embryonic nature of tumors. Starting from an initial cancer stem cell (i-CSC) as a para-embryonic stem cell (p-ESC), a hierarchic sequence of CSCs (CSC1s, CSC2s, CSC3s) and non-CSCs [cancer progenitor cells (CPCs), cancer differentiated cells (CDCs)] would be generated, mimicking an ectopic rudimentary ontogenesis. Such a proposed heterogeneous cell hierarchy within the tumor structure would suggest a tumor growth model consistent with experimental data reported for mammary tumors. By tabulating the theoretical data according to this model, it is possible to identify defined mathematical relationships between cancer cells (CSCs and non-CSCs) that are surprisingly similar to experimental data. Moreover, starting from this model, it is possible to speculate that, during progression, tumor growth would occur in a modular way that recalls the propagation of tumor spheres in vitro. All these considerations favor a comparison among normal blastocysts (as in vitro embryos), initial avascular tumors (as in vivo abnormal blastocysts) and tumor spheres (as in vitro abnormal blastocysts). In conclusion, this work provides further support for the para-embryonic nature of the cancer process, as recently theorized.

12.
Adv Exp Med Biol ; 1217: 363-372, 2020.
Article in English | MEDLINE | ID: mdl-31898238

ABSTRACT

MLN4924, also known as pevonedistat, is a highly selective small-molecule inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8)-activating enzyme (NAE) to block the entire neddylation modification cascade, leading to inactivation of cullin-RING ligases (CRLs), since activation of CRLs requires cullin neddylation. MLN4924 showed impressive anticancer activity in many preclinical studies and is currently in several Phase I/II clinical trials for anticancer therapy as a single agent or in combination with chemotherapeutic drugs.In addition to well-characterized anti-neddylation activity, recent studies showed that MLN4924 has several neddylation-independent activities. First, MLN4924 triggers EGFR dimerization to activate EGFR and its downstream RAS/MAPK and PI3K/AKT1 signals, leading to enhanced tumor sphere formation, accelerated EGF-mediated wound healing, and inhibited ciliogenesis. Second, MLN4924 induces PKM2 tetramerization to promote glycolysis, thus affecting energy metabolism. Third, MLN4924 inhibits the interaction between ACT1 (NF-κB activator 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) and attenuates IL-17A-mediated activation of NF-κB to reduce pulmonary inflammation. Fourth, MLN4924 inhibits IRF3 binding to the IFN-ß promoter to inhibit IFN-ß production. And finally, MLN4924 activates the JNK signaling pathway to reduce c-FLIP levels, thus enhancing TRAIL-induced apoptosis. This chapter will summarize these neddylation-independent activities of MLN4924 and discuss the underlying mechanisms and potential therapeutic applications.


Subject(s)
Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carrier Proteins/metabolism , ErbB Receptors/metabolism , Glycolysis/drug effects , Humans , Interferon-beta/biosynthesis , Membrane Proteins/metabolism , NEDD8 Protein/metabolism , Pneumonia/drug therapy , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins
13.
Adv Exp Med Biol ; 1292: 13-25, 2020.
Article in English | MEDLINE | ID: mdl-29687285

ABSTRACT

BACKGROUND: Cancer is one of the leading causes of death in the world. A great deal of effort has been made to discover new agents for cancer treatment. Xao tam phan (Paramignya trimera) is a traditional medicine of Vietnam used in cancer treatment for a long time, yet there is not much scientific evidence proving its anticancer potency. The study aimed to evaluate the toxicity of Paramignya trimera extract (PTE) on multicellular tumor spheres (MCTS) of MCF-7 cells using hanging drop technique. METHODS: Firstly, MCF-7 cells were seeded on hanging drop plates, spheroid size was tracked, and growth curve was measured by MTT assay and AlamarBlue® assay. The necrotic core of MCTS was evaluated by propidium iodide (PI) staining. Toxicity of doxorubicin (DOX) and tirapazamine (TPZ) was then tested on 3D model compared to 2D culture condition. RESULTS: The results showed that the IC50 of DOX on 3D MCF-7 cells was nearly 50 times greater than monolayer MCF-7 cells. In contrast, TPZ (an agent which is specifically toxic under hypoxic conditions) had significantly lower IC50 in 3D condition than in 2D. The toxicity tests for PTE showed that PTE strongly inhibited MCF-7 cells in both 2D and 3D conditions. Interestingly, the IC50 of PTE in 3D model was remarkably lower than in 2D (IC50 value was 168.9 ± 11.65 µg/ml compared to 260.8 ± 16.54 µg/ml, respectively). The invasion assay showed that PTE completely inhibited invasion of MCF-7 cells at 250 µg/mL concentration. Also, flow cytometry results indicated that PTE effectively induced apoptosis in MCF-7 spheroids in 3D condition at 250 µg/mL concentration. CONCLUSION: The results from this study emphasize the promise of PTE in cancer therapy.


Subject(s)
Breast Neoplasms/pathology , Cell Culture Techniques/methods , Methanol/chemistry , Models, Biological , Plant Extracts/chemistry , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/toxicity , Humans , MCF-7 Cells
14.
Integr Biol (Camb) ; 11(9): 353-361, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31820801

ABSTRACT

Considerable evidence suggests that breast cancer development and metastasis are driven by cancer stem-like cells (CSCs). Due to their unique role in tumor initiation, the interaction between CSCs and stromal cells is especially critical. In this work, we developed a platform to reliably isolate single cells in suspension and grow single-cell-derived spheres for functional enrichment of CSCs. The platform also allows adherent culture of stromal cells for cancer-stromal interaction. As a proof of concept, we grew SUM149 breast cancer cells and successfully formed single-cell-derived spheres. Cancer-associated fibroblasts (CAFs) as stromal cells were found to significantly enhance the formation and growth of cancer spheres, indicating elevated tumor-initiation potential. After on-chip culture for 14 days, we retrieved single-cell derived spheres with and without CAF co-culture for single-cell transcriptome sequencing. Whole transcriptome analysis highlights that CAF co-culture can boost cancer stemness especially ALDHhigh CSCs and alter epithelial/mesenchymal status. Single-cell resolution allows identification of individual CSCs and investigation of cancer cellular heterogeneity. Incorporating whole transcriptome sequencing data with public patient database, we discovered novel genes associated with cancer-CAF interaction and critical to patient survival. The preliminary works demonstrated a reliable platform for enrichment of CSCs and studies of cancer-stromal interaction.


Subject(s)
Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/cytology , Coculture Techniques/methods , Neoplastic Stem Cells/cytology , Transcriptome , Cell Line, Tumor , Dimethylpolysiloxanes/chemistry , Epithelial-Mesenchymal Transition , Female , Humans , Lab-On-A-Chip Devices , RNA-Seq
15.
Medicina (Kaunas) ; 55(11)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661925

ABSTRACT

Background and objectives: Mushrooms that have medicinal properties are part of many traditional diets. The aim of the present study was to use the human breast cancer cell line MCF-7 to investigate the anticancer activity of Pleurotus highking mushroom purified extract fraction-III (PEF-III) and to elucidate the possible mechanism of that activity. Materials and Methods: The effects of PEF-III on cell proliferation and viability were evaluated by a colony formation assay and an MTT assay, respectively. Cell morphological changes, annexin-V phycoerythrin and propidium iodide (PI) staining, DNA fragmentation, and caspase 3/7 activity assays were performed to determine the induction of apoptosis by PEF-III. The genes responsible for regulation of apoptosis were analyzed by means of Western blot analysis. In vitro tumor sphere formation assay was performed using a 3D sphere culture system. Results: PEF-III significantly reduced the proliferation and viability of MCF-7 cells. Cell shrinkage and rounding, and annexin-V phycoerythrin and PI staining followed by flow cytometry indicated that the cell death was due to apoptosis. Additionally, a laddering DNA pattern and increased levels of caspase-3/7 enzyme also corroborated the notion of apoptosis-mediated cell death. This incidence was further confirmed by upregulation of proapoptotic genes (p53 and its target gene, Bax) and downregulation of the expression of an antiapoptotic gene (Bcl-2). PEF-III also reduced the size and number of the tumor spheres in 3D culture conditions. Conclusions: The anticancer activity of PEF-III is due to induction of apoptosis by a shift in the balance of proapoptotic and antiapoptotic genes. Therefore, the findings of the present study may open a path to exploring potential drug candidates from the P. highking mushroom for combating breast cancer.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , MCF-7 Cells/drug effects , Pleurotus , Apoptosis/genetics , Bangladesh , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Humans , Stem Cells/drug effects
16.
Mol Cell Oncol ; 6(5): e1618174, 2019.
Article in English | MEDLINE | ID: mdl-31528694

ABSTRACT

MLN4924, a small molecular inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8) activating enzyme (NAE), blocks cullin neddylation to inactivate cullin-RING ligase. We found that MLN4924 has additional activities: it triggers EGFR dimerization and activation of RAS/MAPK and PI3K/AKT1 signals to stimulate tumor sphere formation and inhibit ciliogenesis; and it triggers PKM2 tetramerization to promote glycolysis.

17.
Int J Mol Sci ; 20(18)2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31510100

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, and thus better understanding of its molecular pathology is crucial for us to devise more effective treatment of this deadly disease. As cancer cell line remains a convenient starting point for discovery and proof-of-concept studies, here we report the miRNA expression characteristics of two cell lines, MIA PaCa-2 and PANC-1, and discovered three miRNAs (miR-7-5p, let-7d, and miR-135b-5p) that are involved in cancer stem cells (CSCs) suppression. After transfection of each miRNA's mimic into PANC-1 cells which exhibits higher stemness feature than MIA-PaCa-2 cells, partial reduction of CSC surface markers and inhibition of tumor sphere formation were observed. These results enlighten us to consider miRNAs as potential therapeutic agents for pancreatic cancer patients via specific and effective inhibition of CSCs.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Knockdown Techniques , Gene Ontology , Gene Regulatory Networks , Humans , Pancreatic Neoplasms/pathology , Spheroids, Cellular/metabolism
18.
Stem Cell Res Ther ; 10(1): 175, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31196164

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) play a critical role in tumor development and progression and are involved in cancer metastasis. The role of reactive oxygen species (ROS) in CSCs and cancer metastasis remains controversial. The aim of the present study was to investigate the correlation between ROS level of CSCs and cancer metastasis and to explore the possible underlying molecular mechanisms. METHODS: Four different cell lines were used to isolate tumor spheres and to analyze intrinsic properties of tumor sphere cells including proliferation, self-renewal potential, differentiation, drug-resistance and cancer metastasis in vitro and in vivo. ROS assays were used to detect the intracellular ROS level of tumor spheres cells. Gene expression analysis and western blot were used to investigate the underlying mechanisms of ROS in regulating cancer metastasis. RESULTS: Tumor spheres possessed the characteristic features of CSCs, and ROS-high tumor spheres (RH-TS) displayed elevated mitochondrial ROS level exclusively drove metastasis formation. The gene expression analysis showed elevated fatty acid ß-oxidation, downregulation of epithelial marker upregulation of mesenchymal markers, and the activation of MAP kinase cascades. Furthermore, 14 up-regulated genes in RH-TS cells were associated with reduced overall survival of different cancer patients. CONCLUSIONS: Our findings demonstrate that CSCs characterized by elevated mitochondrial ROS level potentiate cancer metastasis. Mechanistically, elevated mitochondrial ROS via fatty acid ß-oxidation, activates the MAPK cascades, resulting in the epithelial-mesenchymal transition (EMT) process of RH-TS cells, thereby potentiating caner invasion and metastasis. Therefore, targeting mitochondrial ROS might provide a promising approach to prevent and alleviate cancer metastasis induced by RH-TS cells.


Subject(s)
Epithelial-Mesenchymal Transition/physiology , Mitochondria/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , HCT116 Cells , HT29 Cells , Humans , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Oxidation-Reduction , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology
19.
Article in English | MEDLINE | ID: mdl-30319887

ABSTRACT

Tumor sphere quantification plays an important role in cancer research and drugs screening. Even though the number and size of tumor spheres can be found manually, this process is time-consuming, prone to making errors, and may not be viable when the number of images is very large. This manuscript presents a method for automated quantification of spheres with a novel segmentation technique. The segmentation method relies on initial watershed algorithm which detects the minima of the distance transform and finds a tumor sphere for each minimum. Due to the irregular edges of tumor spheres, the distance transform matrix has often more number of minima than the true number of spheres. This leads to the over segmentation problem. The proposed approach uses the smoothed form of the distance transform to effectively eliminate superfluous minima and then seeds the watershed algorithm with the remaining minima. The proposed method was validated over pancreatic tumor spheres images achieving high efficiency for tumor spheres quantification.

20.
Onco Targets Ther ; 11: 5723-5731, 2018.
Article in English | MEDLINE | ID: mdl-30254465

ABSTRACT

PURPOSE: Cancer stem cells (CSCs) are a small population of cancer cells located within a tumor that are highly tumorigenic, capable of tumor initiation, and resistant to cancer therapies. We identified the potential genes involved in regulating stemness properties and investigated the mechanisms in small-cell lung cancer (SCLC). MATERIALS AND METHODS: Whole transcriptome sequencing technology was used to screen the potential genes involved in regulating stemness properties from SCLC-SCs (uPAR+) and differentiated cells (uPAR-) in the H446 cell line. The selected genes were validated by quantitative reverse transcription PCR and ELISAs. The effect of IL-8 on stemness of sphere-forming cells was determined through tumor sphere formation, wound healing migration, and in vivo tumorigenesis assays. RESULTS: In our study, uPAR+ and uPAR- cells showed different gene expression profiles. IL-8 was upregulated in SCLC sphere-forming cells. Blocking IL-8 expression with siRNA led to loss of stemness, including the self-renewal capability, migration, expression of stemness-related genes, and in vivo tumorigenicity, in sphere-forming cells. Consistently, exogenously added IL-8 enhanced stemness properties in parental cells. CONCLUSION: IL-8 was upregulated in SCLC sphere-forming cells, and critical for the acquisition and/or maintenance of the stemness features in the SCLC cell line H446. Our results suggest that blocking IL-8 signaling may provide a novel therapeutic approach for targeting SCLC-SCs and improve treatment and outcomes in SCLC.

SELECTION OF CITATIONS
SEARCH DETAIL
...