Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Stem Cell Res Ther ; 15(1): 267, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183337

ABSTRACT

In recent years, biologists and clinicians have witnessed prominent advances in in vitro 3D culture techniques related to biomimetic human/animal tissue analogs. Numerous data have confirmed that unicellular and multicellular (tumoroids) tumor spheroids with dense native cells in certain matrices are sensitive and valid analytical tools for drug screening, cancer cell dynamic growth, behavior, etc. in laboratory settings. Angiogenesis/vascularization is a very critical biological phenomenon to support oxygen and nutrients to tumor cells within the deep layer of solid masses. It has been shown that endothelial cell (EC)-incorporated or -free spheroid/tumoroid systems provide a relatively reliable biological platform for monitoring the formation of nascent blood vessels in micron/micrometer scales. Besides, the paracrine angiogenic activity of cells within the spheroid/tumoroid systems can be monitored after being treated with different therapeutic approaches. Here, we aimed to collect recent advances and findings related to the monitoring of cancer angiogenesis using unicellular and multicellular tumor spheroids. Vascularized spheroids/tumoroids can help us in the elucidation of mechanisms related to cancer formation, development, and metastasis by monitoring the main influencing factors.


Subject(s)
Neoplasms , Neovascularization, Pathologic , Spheroids, Cellular , Humans , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Spheroids, Cellular/metabolism , Neoplasms/blood supply , Neoplasms/pathology , Animals , Angiogenesis
2.
Cell Rep Methods ; 4(6): 100792, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38861990

ABSTRACT

3D tumoroids have revolutionized in vitro/ex vivo cancer biology by recapitulating the complex diversity of tumors. While tumoroids provide new insights into cancer development and treatment response, several limitations remain. As the tumor microenvironment, especially the immune system, strongly influences tumor development, the absence of immune cells in tumoroids may lead to inappropriate conclusions. Macrophages, key players in tumor progression, are particularly challenging to integrate into the tumoroids. In this study, we established three optimized and standardized methods for co-culturing human macrophages with breast cancer tumoroids: a semi-liquid model and two matrix-embedded models tailored for specific applications. We then tracked interactions and macrophage infiltration in these systems using flow cytometry and light sheet microscopy and showed that macrophages influenced not only tumoroid molecular profiles but also chemotherapy response. This underscores the importance of increasing the complexity of 3D models to more accurately reflect in vivo conditions.


Subject(s)
Breast Neoplasms , Cell Communication , Coculture Techniques , Macrophages , Tumor Microenvironment , Humans , Macrophages/immunology , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Female , Tumor Microenvironment/immunology , Cell Line, Tumor
3.
Hum Cell ; 37(4): 1132-1140, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38829559

ABSTRACT

Approximately 3-5% of non-small cell lung cancers (NSCLC) harbor ALK fusion genes and may be responsive to anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors. There are only a few reports on cell lines with EML4-ALK variant 3 (v3) and tumoroids that can be subject to long-term culture (> 3 months). In this study, we established tumoroids (PDT-LUAD#119) from a patient with lung cancer harboring EML4-ALK that could be cultured for 12 months. Whole-exome sequencing and RNA sequencing analyses revealed TP53 mutations and an EML4-ALK v3 mutation. PDT-LUAD#119 lung tumoroids were sensitive to the ALK tyrosine kinase inhibitors (ALK TKIs) crizotinib, alectinib, entrectinib, and lorlatinib, similar to NCI-H3122 cells harboring EML4-ALK variant 1 (v1). Unexpectedly, clear squamous cell carcinoma and solid adenocarcinoma were observed in xenografts from PDT-LUAD#119 lung tumoroids, indicating adenosquamous carcinoma. Immunostaining revealed that the squamous cell carcinoma was ALK positive, suggesting a squamous transformation of the adenocarcinoma. Besides providing a novel cancer model to support basic research on ALK-positive lung cancer, PDT-LUAD#119 lung tumoroids will help elucidate the pathogenesis of adenosquamous carcinoma.


Subject(s)
Anaplastic Lymphoma Kinase , Carcinoma, Squamous Cell , Lung Neoplasms , Oncogene Proteins, Fusion , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Animals , Cell Transformation, Neoplastic/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Crizotinib/pharmacology , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology
4.
Adv Sci (Weinh) ; 11(34): e2401539, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38924371

ABSTRACT

Organoid tumor models have emerged as a powerful tool in the fields of biology and medicine as such 3D structures grown from tumor cells recapitulate better tumor characteristics, making these tumoroids unique for personalized cancer research. Assessment of their functional behavior, particularly protein secretion, is of significant importance to provide comprehensive insights. Here, a label-free spectroscopic imaging platform is presented with advanced integrated optofluidic nanoplasmonic biosensor that enables real-time secretion analysis from single tumoroids. A novel two-layer microwell design isolates tumoroids, preventing signal interference, and the microarray configuration allows concurrent analysis of multiple tumoroids. The dual imaging capability combining time-lapse plasmonic spectroscopy and bright-field microscopy facilitates simultaneous observation of secretion dynamics, motility, and morphology. The integrated biosensor is demonstrated with colorectal tumoroids derived from both cell lines and patient samples to investigate their vascular endothelial growth factor A (VEGF-A) secretion, growth, and movement under various conditions, including normoxia, hypoxia, and drug treatment. This platform, by offering a label-free approach with nanophotonics to monitor tumoroids, can pave the way for new applications in fundamental biological studies, drug screening, and the development of therapies.


Subject(s)
Vascular Endothelial Growth Factor A , Humans , Cell Line, Tumor , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Biosensing Techniques/methods , Organoids/metabolism , Colorectal Neoplasms/metabolism
5.
Cell Oncol (Dordr) ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806997

ABSTRACT

Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.

6.
Front Immunol ; 15: 1379613, 2024.
Article in English | MEDLINE | ID: mdl-38698850

ABSTRACT

Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient's clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Discovery , Lung Neoplasms , Oncolytic Virotherapy , Proteomics , Humans , Proteomics/methods , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Oncolytic Virotherapy/methods , Organoids , Oncolytic Viruses/immunology , Proteome , Biomarkers, Tumor/metabolism , B7-H1 Antigen/metabolism
7.
Hum Cell ; 37(4): 1194-1204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38632190

ABSTRACT

Among mucus-producing lung cancers, invasive mucinous adenocarcinoma of the lung is a rare and unique subtype of pulmonary adenocarcinoma. Notably, mucus production may also be observed in the five subtypes of adenocarcinoma grouped under the higher-level diagnosis of Invasive Non-mucinous Adenocarcinomas (NMA). Overlapping pathologic features in mucus-producing tumors can cause diagnostic confusion with significant clinical consequences. In this study, we established lung tumoroids, PDT-LUAD#99, from a patient with NMA and mucus production. The tumoroids were derived from the malignant pleural effusion of a patient with lung cancer and have been successfully developed for long-term culture (> 11 months). Karyotyping by fluorescence in situ hybridization using an alpha-satellite probe showed that tumoroids harbored aneuploid karyotypes. Subcutaneous inoculation of PDT-LUAD#99 lung tumoroids into immunodeficient mice resulted in tumor formation, suggesting that the tumoroids were derived from cancer. Xenografts from PDT-LUAD#99 lung tumoroids reproduced the solid adenocarcinoma with mucin production that was observed in the patient's metastatic lymph nodes. Immunoblot analysis showed MUC5AC secretion into the culture supernatant of PDT-LUAD#99 lung tumoroids, which in contradistinction was barely detected in the culture supernatants of NCI-A549 and NCI-H2122 pulmonary adenocarcinoma cells known for their mucin-producing abilities. Here, we established a novel high-mucus-producing lung tumoroids from a solid adenocarcinoma. This preclinical model may be useful for elucidating the pathogenesis of mucus-producing lung cancer.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Mucin 5AC , Mucus , Humans , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mucus/metabolism , Animals , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Mucin 5AC/metabolism , Mucin 5AC/genetics , Mice , Cell Line, Tumor , Tumor Cells, Cultured , Male , Adenocarcinoma, Mucinous/pathology , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/metabolism
8.
Mol Clin Oncol ; 20(4): 31, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38476334

ABSTRACT

Tumor hyperthermia is the fifth tumor treatment method after surgery, chemotherapy, radiotherapy and biological therapy, and is also one of the important adjuvant treatment methods for tumors. Hyperthermia can not only directly eliminate tumor cells, but also stimulate the antitumor immune response of the body, and improve the sensitivity of tumor tissues to radiotherapy and chemotherapy. An organoid is a tissue-specific cell cluster formed by 3D culture of various types of cells derived from target organ stem cells, which can reproduce the functions of target organs in vivo. At present, the research models of hepatocellular carcinoma (HCC) in vitro are mainly 2D culture cell line models, and there is no clinical report on tumor hyperthermia using HCC tumoroids. It was hypothesized that this will be a promising research direction.

9.
Methods Mol Biol ; 2777: 99-122, 2024.
Article in English | MEDLINE | ID: mdl-38478339

ABSTRACT

Cancer stem-like cells (CSC) are a major contributing factor to chemoresistance, tumor recurrence, and poor survival outcomes in patients across cancer types. Signaling from non-tumor cells in the tumor microenvironment (TME) enriches for and supports CSC. This complex cell-cell signaling in the heterogeneous TME presents a challenge for patient survival; however, it also presents an opportunity to develop new targeted therapies that can inhibit survival of CSC. In this chapter, we report a multicellular tumoroid model which can be used to investigate the interactions between cancer cells and non-tumor cells in the TME to better understand the contribution of various cell types to cancer cell phenotypes, as well as the underlying mechanisms involved. The following methods allow for each cell type to be distinguished using FACS and studied individually. Gene expression can be analyzed for cancer cells, as well as the other non-tumor cells using qPCR following sorting. The response to chemotherapeutic agents and expression of stem markers can be determined for cancer cells using flow cytometry, excluding the other cell types to get an accurate view of the cancer cells. Furthermore, the viability of non-tumor cells can be analyzed as well to determine if there are cytotoxic effects of the drugs on non-tumor cells. Thus, the multicellular tumoroid model will reveal the interactions between the CSC and non-tumor cells in the heterogenous TME, resulting in discoveries in the fields of cancer biology, novel targeted therapies, and personalized drug screening for precision medicine.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Tumor Microenvironment , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Antineoplastic Agents/pharmacology , Cell Communication , Neoplastic Stem Cells/pathology
10.
Matrix Biol ; 125: 12-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944712

ABSTRACT

Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-ß signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-ß signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-ß-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-ß signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.


Subject(s)
Prostatic Neoplasms , Transforming Growth Factor beta , Male , Humans , Transforming Growth Factor beta/metabolism , Epithelial-Mesenchymal Transition , Prostatic Neoplasms/pathology , Extracellular Matrix/metabolism , Prostate/metabolism , Cell Line, Tumor
11.
Cancer Cytopathol ; 132(2): 96-102, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37843532

ABSTRACT

Patient-derived organoid models hold promise for advancing clinical cancer research, including diagnosis and personalized and precision medicine approaches, and cytology, in particular, plays a pivotal role in this process. These three-dimensional multicellular structures are heterogeneous, potentially maintain the cancer phenotype, and conserve the genomic, transcriptomic, and epigenomic patterns of the parental tumors. To ensure that only tumor tissue is used for organoid development, cytologic validation is necessary before initiating the process of organoid generation. Here, we explore the technology of tumor organoids and discuss the fundamental application of cytology as a simple and cost-effective approach toward organoid development. We also underscore the potential application of organoid development in drug efficacy studies for lung cancer and head and neck tumors. Additionally, we stress the importance of using fine-needle aspiration to generate tumoroids.


Subject(s)
Lung Neoplasms , Translational Research, Biomedical , Humans , Precision Medicine/methods , Cytodiagnosis , Organoids/pathology , Lung Neoplasms/pathology
12.
Mater Today Adv ; 192023 Aug.
Article in English | MEDLINE | ID: mdl-37691883

ABSTRACT

Recent advances in biomaterials and 3D printing/culture methods enable various tissue-engineered tumor models. However, it is still challenging to achieve native tumor-like characteristics due to lower cell density than native tissues and prolonged culture duration for maturation. Here, we report a new method to create tumoroids with a mechanically active tumor-stroma interface at extremely high cell density. This method, named "inkjet-printed morphogenesis" (iPM) of the tumor-stroma interface, is based on a hypothesis that cellular contractile force can significantly remodel the cell-laden polymer matrix to form densely-packed tissue-like constructs. Thus, differential cell-derived compaction of tumor cells and cancer-associated fibroblasts (CAFs) can be used to build a mechanically active tumor-stroma interface. In this methods, two kinds of bioinks are prepared, in which tumor cells and CAFs are suspended respectively in the mixture of collagen and poly (N-isopropyl acrylamide-co-methyl methacrylate) solution. These two cellular inks are inkjet-printed in multi-line or multi-layer patterns. As a result of cell-derived compaction, the resulting structure forms tumoroids with mechanically active tumor-stroma interface at extremely high cell density. We further test our working hypothesis that the morphogenesis can be controlled by manipulating the force balance between cellular contractile force and matrix stiffness. Furthermore, this new concept of "morphogenetic printing" is demonstrated to create more complex structures beyond current 3D bioprinting techniques.

13.
Bioengineering (Basel) ; 10(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37508859

ABSTRACT

Ovarian dysfunction poses significant threats to the health of female individuals. Ovarian failure can lead to infertility due to the lack or inefficient production of fertilizable eggs. In addition, the ovary produces hormones, such as estrogen and progesterone, that play crucial roles not only during pregnancy, but also in maintaining cardiovascular, bone, and cognitive health. Decline in estrogen and progesterone production due to ovarian dysfunction can result in menopausal-associated syndromes and lead to conditions, such as osteoporosis, cardiovascular disease, and Alzheimer's disease. Recent advances in the design of bioengineered three-dimensional (3D) ovarian models, such as ovarian organoids or artificial ovaries, have made it possible to mimic aspects of the cellular heterogeneity and functional characteristics of the ovary in vitro. These novel technologies are emerging as valuable tools for studying ovarian physiology and pathology and may provide alternatives for fertility preservation. Moreover, they may have the potential to restore aspects of ovarian function, improving the quality of life of the (aging) female population. This review focuses on the state of the art of 3D ovarian platforms, including the latest advances modeling female reproduction, female physiology, ovarian cancer, and drug screening.

14.
Adv Biol (Weinh) ; 7(12): e2300118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37505458

ABSTRACT

Tumoroids are 3D in vitro models that recapitulate key features of in vivo tumors, such as their architecture - hypoxic center and oxygenated outer layer - in contrast with traditional 2D cell cultures. Moreover, they may be able to preserve the patient-specific signature in terms of cell heterogeneity and mutations. Tumoroids are, therefore, interesting tools for improving the understanding of cancer biology, developing new drugs, and potentially designing personalized therapeutic plans. Currently, tumoroids are most often established using basement membrane extracts (BME), which provide a multitude of biological cues. However, BME are characterized by a lack of well-defined composition, limited reproducibility, and potential immunogenicity as a consequence of their natural origin. Synthetic polymers can overcome these problems but lack structural and biochemical complexity, which can limit the functional capabilities of organoids. Biohybrid hydrogels consisting of both natural and synthetic components can combine their advantages and offer superior 3D culture systems. In this review, it is summarized efforts devoted to producing tumoroids using different types of biohybrid hydrogels, which are classified according to their crosslinking mechanism.


Subject(s)
Hydrogels , Organoids , Humans , Hydrogels/chemistry , Reproducibility of Results , Basement Membrane , Polymers
15.
Eur J Pharm Sci ; 188: 106516, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37406971

ABSTRACT

Extracellular vesicles (EVs) are nanosized particles released from most human cell types that contain a variety of cargos responsible for mediating cell-to-cell and organ-to-organ communications. Current knowledge demonstrates that EVs also play critical roles in many aspects of the progression of Non-Small-Cell Lung Cancer (NSCLC). Their roles range from increasing proliferative signalling to inhibiting apoptosis, promoting cancer metastasis, and modulating the tumour microenvironment to support cancer development. However, due to the limited availability of patient samples, intrinsic inter-species differences between human and animal EV biology, and the complex nature of EV interactions in vivo, where multiple cell types are present and several events occur simultaneously, the use of conventional preclinical and clinical models has significantly hindered reaching conclusive results. This review discusses the biological roles that EVs are currently known to play in NSCLC and identifies specific challenges in advancing today's knowledge. It also describes the NSCLC models that have been used to define currently-known EV functions, the limitations associated with their use in this field, and how New Approach Methodologies (NAMs), such as microfluidic platforms, organoids, and spheroids, can be used to overcome these limitations, effectively supporting future exciting discoveries in the NSCLC field and the potential clinical exploitation of EVs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Animals , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Signal Transduction , Cell Communication , Tumor Microenvironment
16.
Cancer Cell Int ; 23(1): 118, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337165

ABSTRACT

BACKGROUND: Complexity and heterogeneity of the tumor niche are closely associated with the failure of therapeutic protocols. Unfortunately, most data have been obtained from conventional 2D culture systems which are not completely comparable to in vivo microenvironments. Reconstructed 3D cultures composed of multiple cells are valid cell-based tumor models to recapitulate in vivo-like interaction between the cancer cells and stromal cells and the oncostatic properties of therapeutics. Here, we aimed to assess the tumoricidal properties of melatonin on close-to-real colon cancer tumoroids in in vitro conditions. METHODS: Using the hanging drop method, colon cancer tumoroids composed of three cell lines, including adenocarcinoma HT-29 cells, fibroblasts (HFFF2), and endothelial cells (HUVECs) at a ratio of 2: 1: 1, respectively were developed using 2.5% methylcellulose. Tumoroids were exposed to different concentrations of melatonin, from 0.005 to 0.8 mM and 4 to 10 mM, for 48 h. The survival rate was measured by MTT and LDH leakage assays. Protein levels of endocan and VEGF were assessed using western blotting. Using histological examination (H & E) staining, the integrity of cells within the tumoroid parenchyma was monitored. RESULTS: Despite the reduction of viability rate in lower doses, the structure of tumoroids remained unchanged. In contrast, treatment of tumoroids with higher doses of melatonin, 4 and 10 mM, led to disaggregation of cells and reduction of tumoroid diameter compared to the non-treated control tumoroids (p < 0.05). By increasing melatonin concentration from 4 to 10 mM, the number of necrotic cells increased. Data showed the significant suppression of endocan in melatonin-treated tumoroids related to the non-treated controls (p < 0.05). According to our data, melatonin in higher doses did not alter protein levels of VEGF (p > 0.05). CONCLUSIONS: Melatonin can exert its tumoricidal properties on colon cancer tumoroids via the reduction of tumor cell viability and inhibition of the specific pro-angiogenesis factor.

17.
MethodsX ; 10: 102242, 2023.
Article in English | MEDLINE | ID: mdl-37346478

ABSTRACT

Targeting different pathways in combinational therapy may lead to synergistic effects with higher drug efficiency. Due to a large number of candidate drugs and the variability in the genomic landscape of the disease, conventional cell culture models have limited success. Three-dimensional (3D) cell culture platforms such as tumoroids not only provide a pathophysiological relevant condition but also allow for low-cost and high-throughput drug screening strategies. Immunostaining of targeted proteins within a tumoroid is challenging as the interior cells are difficult to access via a non-destructive method. Immunohistochemistry (IHC) is an important technique in clinical research to explore the expression of various biomarkers. IHC staining of tumoroids allows non-destructive detection of unstable proteins by direct fixation of cells at the state of tumor microenvironment (TME) context, providing two main advantages. First, the target protein can be fixed without dissociating cells and disintegration of tumoroids into a single-cell suspension. Second, staining the preserved structure of tumoroids helps identify the location of the target proteins as well as the spatial distribution throughout the tumoroid geometry. In this protocol, we describe the detailed methodology of a non-destructive IHC staining of cancer biomarkers which minimizes the manipulation of tumoroids prior to fixation by eliminating multiple centrifugations and shaking steps typically required for removing excess hydrogel and collecting tumoroids. The protocol can be used in studies involving prognostic and predictive biomarker investigations in new anti-tumor drug development strategies.

18.
Biofabrication ; 15(2)2023 01 31.
Article in English | MEDLINE | ID: mdl-36626838

ABSTRACT

Realizing the translational impacts of three-dimensional (3D) bioprinting for cancer research necessitates innovation in bioprinting workflows which integrate affordability, user-friendliness, and biological relevance. Herein, we demonstrate 'BioArm', a simple, yet highly effective extrusion bioprinting platform, which can be folded into a carry-on pack, and rapidly deployed between bio-facilities. BioArm enabled the reconstruction of compartmental tumoroids with cancer-associated fibroblasts (CAFs), forming the shell of each tumoroid. The 3D printed core-shell tumoroids showedde novosynthesized extracellular matrices, and enhanced cellular proliferation compared to the tumour alone 3D printed spheroid culture. Further, thein vivophenotypes of CAFs normally lost after conventional 2D co-culture re-emerged in the bioprinted model. Embedding the 3D printed tumoroids in an immune cell-laden collagen matrix permitted tracking of the interaction between immune cells and tumoroids, and subsequent simulated immunotherapy treatments. Our deployable extrusion bioprinting workflow could significantly widen the accessibility of 3D bioprinting for replicating multi-compartmental architectures of tumour microenvironment, and for developing strategies in cancer drug testing in the future.


Subject(s)
Bioprinting , Cancer-Associated Fibroblasts , Neoplasms , Humans , Bioprinting/methods , Cell Communication , Collagen , Hydrogels , Neoplasms/therapy , Printing, Three-Dimensional , Tissue Scaffolds , Tumor Microenvironment
19.
J Chemother ; 35(2): 104-116, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35285783

ABSTRACT

Therapeutic approaches of advanced colorectal cancer are more complex, here we present a living biobank of patient-derived tumoroids from advanced colorectal cancer patients and show examples of how these tumoroids can be used to to simulate cancer behavior ex vivo and provide more evidence for tumoroids could be utilized as a predictive platform during chemotherapy treatment to identify the chemotherapy response. Morphological, histological and genomic characterization analysis of colorectal cancer tumoroids was conducted. Further, we treated colorectal cancer tumoroids with different drugs to detect cellular activities to evaluate drug sensitivity using CellTiter-Glo 3 D cell viability assay. Then the drug sensitivity of tumoroids was compared with clinical outcomes. Our results implied that tumoroids recapitulated the histological features of the original tumours and genotypic profiling of tumoroids showed a high-level of similarity to the matched primary tumours. Dose-response curves, area under the curve and tumour inhibitory rate of each therapeutic profiling calculations in tumoroids demonstrated a great diversity and we gained 88.24% match ratio between the sensitivity data of tumoroids with their paired patients' clinical outcomes. tumour inhibitory rate of each treatment parameters in tumoroids performed positive correlation with progression-free survival while area under the curve of each treatment parameters performed negative correlation with progression-free survival of the corresponding patients. In summary, We presented a living biobank of tumoroids from advanced colorectal cancer patients and show tumoroids got great potential for predicting clinical responses to chemotherapy treatment of advanced colorectal cancer.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Tissue Banks
20.
Pharmaceutics ; 14(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36559203

ABSTRACT

Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.

SELECTION OF CITATIONS
SEARCH DETAIL