Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Chemistry ; 30(42): e202401897, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38785102

ABSTRACT

The SARS-CoV-2 genome has been shown to be m6A methylated at several positions in vivo. Strikingly, a DRACH motif, the recognition motif for adenosine methylation, resides in the core of the transcriptional regulatory leader sequence (TRS-L) at position A74, which is highly conserved and essential for viral discontinuous transcription. Methylation at position A74 correlates with viral pathogenicity. Discontinuous transcription produces a set of subgenomic mRNAs that function as templates for translation of all structural and accessory proteins. A74 is base-paired in the short stem-loop structure 5'SL3 that opens during discontinuous transcription to form long-range RNA-RNA interactions with nascent (-)-strand transcripts at complementary TRS-body sequences. A74 can be methylated by the human METTL3/METTL14 complex in vitro. Here, we investigate its impact on the structural stability of 5'SL3 and the long-range TRS-leader:TRS-body duplex formation necessary for synthesis of subgenomic mRNAs of all four viral structural proteins. Methylation uniformly destabilizes 5'SL3 and long-range duplexes and alters their relative equilibrium populations, suggesting that the m6A74 modification acts as a regulator for the abundance of viral structural proteins due to this destabilization.


Subject(s)
Adenosine , Methyltransferases , RNA, Messenger , RNA, Viral , SARS-CoV-2 , Transcription, Genetic , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA, Viral/genetics , Methyltransferases/chemistry , Methyltransferases/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Methylation , Adenosine/chemistry , Adenosine/analogs & derivatives , Nucleic Acid Conformation , Genome, Viral
2.
Life Sci ; 341: 122482, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309577

ABSTRACT

AIMS: RBM10 is a well-known RNA binding protein that regulates alternative splicing in various disease states. We have shown a splicing-independent function of RBM10 that regulates heart failure. This study aims to unravel a new biological function of RBM10 phosphorylation by proto-oncogene cSrc that enables anti-hypertrophy gene program and controls cardiac hypertrophy. MATERIALS AND METHODS: We employ in vitro and in vivo approaches to characterise RBM10 phosphorylation at three-tyrosine residues (Y81, Y500, and Y971) by cSrc and target mRNA regulation. We also use isoproterenol induced rat heart and cellular hypertrophy model to determine role of cSrc-mediated RBM10 phosphorylation. KEY FINDINGS: We show that RBM10 phosphorylation is induced in cellular and animal heart model of cardiac hypertrophy and regulates target mRNA expression and 3'-end formation. Inhibition of cSrc kinase or mutation of the three-tyrosine phosphorylation sites to phenylalanine accentuates myocyte hypertrophy, and results in advancement and an early attainment of hypertrophy in the heart. RBM10 is down regulated in the hypertrophic myocyte and that its re-expression reverses cellular and molecular changes in the myocyte. However, in the absence of phosphorylation (cSrc inhibition or phospho-deficient mutation), restoration of endogenous RBM10 level in the hypertrophic heart or ectopic re-expression in vitro failed to reverse cardiomyocyte hypertrophy. Mechanistically, loss of RBM10 phosphorylation inhibits nuclear localisation and interaction with Star-PAP compromising anti-hypertrophy gene expression. SIGNIFICANCE: Our study establishes that cSrc-mediated RBM10 phosphorylation arbitrates anti-hypertrophy gene program. We also report a new functional regulation of RBM10 by phosphorylation that is poised to control heart failure.


Subject(s)
Cardiomegaly , Heart Failure , Rats , Animals , Phosphorylation , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Proto-Oncogenes , RNA, Messenger/genetics , Tyrosine/metabolism , Myocytes, Cardiac/metabolism
3.
Korean J Ophthalmol ; 36(5): 452-462, 2022 10.
Article in English | MEDLINE | ID: mdl-35989077

ABSTRACT

MicroRNAs (miRNAs) are the small noncoding RNA molecules which regulate target gene expression posttranscriptionally. They are known to regulate key cellular processes like inflammation, cell differentiation, cell proliferation, and cell apoptosis across various ocular diseases. Due to their easier access, recent focus has been laid on the investigation of miRNA expression and their involvement in several conjunctival diseases. The aim of this narrative review is to provide understanding of the miRNAs and describe the current role of miRNAs as the mediators of the various conjunctival diseases. A literature search was made using PubMed, Scopus, and Web of Science databases for studies involving miRNAs in the conjunctival pathological conditions. Original articles in the last 10 years involving both human and animal models were included. Literature search retrieved 27 studies matching our criteria. Pertaining to the numerous literatures, there is a strong correlation between miRNA and the various pathological conditions that occur in the conjunctiva. miRNAs are involved in various physiological processes such as cell differentiation, proliferation, apoptosis, development, and inflammation by regulating various signaling pathways, genes, proteins, and mediators. Pterygium was the most studied conjunctival disease for miRNA involvement, whereas miRNA research in allergic conjunctivitis is still in its early stages. Our review provides deep insights into the various miRNAs playing an important role in the various conjunctival diseases. miRNAs do have the potential to serve as noninvasive biomarkers with diagnostic, prognostic, and therapeutic implications. However, multitudinous studies are required to validate miRNAs as the reliable biomarkers in conjunctival pathologies and its targeted therapy.


Subject(s)
MicroRNAs , Pterygium , Animals , Biomarkers , Cell Proliferation , Humans , Inflammation , MicroRNAs/genetics , MicroRNAs/metabolism
4.
Life (Basel) ; 10(10)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33022942

ABSTRACT

Non-invasive diagnostic markers are needed to ease the diagnosis of non-alcoholic steatohepatitis (NASH) among patients with non-alcoholic fatty liver disease (NAFLD). The long noncoding RNA (lncRNA) LeXis is related to cholesterol metabolism and hepatic steatosis in mice, and its batch genome conversion in humans is TCONS_00016452. Here, we aimed to evaluate the potential of lncRNA LeXis as a non-invasive diagnostic marker for NASH. We analyzed a total of 44 NAFLD patients whose diagnosis was confirmed by a pathologist through analysis of a percutaneous liver biopsy. The expression of LeXis in the plasma of NAFLD patients with and without NASH was compared using quantitative real-time polymerase chain reaction. The expression of plasma LeXis was significantly higher in patients with NASH than in those with NAFL (8.2 (5.0-14.9); 4.6 (4.0-6.6), p = 0.025). The area under the receiver operating characteristic curve was 0.743 (95% CI 0.590-0.895, p < 0.001), and a sensitivity of 54.3% and specificity of 100% could be achieved for NASH diagnosis. Low LeXis was independently associated with NASH diagnosis in patients with NAFLD (p = 0.0349, odds ratio = 22.19 (5% CI, 1.25-395.22)). Therefore, circulating lncRNA LeXis could be a potential non-invasive diagnostic biomarker for NASH.

5.
Indian J Hematol Blood Transfus ; 36(2): 271-276, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32425377

ABSTRACT

Increasing evidence of involvement of non-coding RNAs, especially long non-coding RNAs (lncRNAs), in the molecular biology of various malignancies have been recently reported. Their utilization as markers for diagnosis, prognosis and evaluation of treatment response was widely investigated. As the impact of lncRNA HOTAIR on multiple myeloma (MM) was not properly highlighted, we aimed to explore the expression levels of HOTAIR in three groups of MM patients and to analyze its relationship to different patients' characteristics. Plasma samples were withdrawn from 24 newly diagnosed MM patients, 23 post-therapy patients in complete response (CR) or very good partial response (VGPR) and 15 patients who had either progressive disease (PD) or relapse. The expression of lncRNA HOTAIR in MM patients and 20 healthy controls was analyzed by quantitative reverse transcription polymerase chain reactions. HOTAIR was significantly upregulated in newly diagnosed and PD/relapse categories in comparison with controls and MM patients who had achieved CR or VGPR (P < 0.001). Furthermore; HOTAIR expression levels correlated with the percentage of malignant plasma cells in bone marrow (P = 0.006) and disease stage (ISS stage) (P = 0.031). HOTAIR may be employed as  prognostic molecular marker and novel therapeutic tool for newly diagnosed MM patients.

6.
Curr Neuropharmacol ; 18(2): 153-166, 2020.
Article in English | MEDLINE | ID: mdl-31660836

ABSTRACT

An epigenetic effect mainly refers to a heritable modulation in gene expression in the short term but does not involve alterations in the DNA itself. Epigenetic molecular mechanisms include DNA methylation, histone modification, and untranslated RNA regulation. Antiepileptic drugs have drawn attention to biological and translational medicine because their impact on epigenetic mechanisms will lead to the identification of novel biomarkers and possible therapeutic strategies for the prevention and treatment of various diseases ranging from neuropsychological disorders to cancers and other chronic conditions. However, these transcriptional and posttranscriptional alterations can also result in adverse reactions and toxicity in vitro and in vivo. Hence, in this review, we focus on recent findings showing epigenetic processes mediated by antiepileptic drugs to elucidate their application in medical experiments and shed light on epigenetic research for medicinal purposes.


Subject(s)
Anticonvulsants/pharmacology , Epigenesis, Genetic/drug effects , Anticonvulsants/therapeutic use , Cardiovascular Diseases , DNA Methylation , Epigenomics , Histones/genetics , Humans , Kidney Diseases , Neoplasms , Nervous System Diseases , Protein Processing, Post-Translational , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
7.
Cancer Manag Res ; 11: 1997-2006, 2019.
Article in English | MEDLINE | ID: mdl-30881124

ABSTRACT

BACKGROUND: As a new class of endogenous ncRNAs, circRNAs have been recently verified to be involved in the carcinogenesis and progression of human cancers. In the current study, we attempted to explore the potential function of a candidate circRNA (hsa_circ_0000337) in esophageal squamous cell carcinoma (ESCC). PATIENTS AND METHODS: The altered expression of hsa_circ_0000337 was validated in clinical samples from 48 patients with ESCC. The human esophageal carcinoma cell lines KYSE-150 and TE-1, and the normal human esophageal epithelial cell line (HET-1A) were applied for functional analysis of hsa_circ_0000337. Cell proliferation was measured using the Cell Counting Kit-8 assay and the colony formation assay. Cell invasion and migration were detected by Transwell and wound healing assays, respectively. We further performed bioinformatic analysis and luciferase reporter assays to explore the role of hsa_circ_0000337 as a miRNA sponge. RESULTS: hsa_circ_0000337 was significantly upregulated in ESCC tissues compared to adjacent normal-appearing tissues (P<0.0001). In our in vitro experiment, the expression of hsa_circ_0000337 was higher in TE-1 compared to the normal human esophageal epithelial cell line HET-1A (P<0.001), but was not significantly different in KYSE-150 (P>0.05). Knockdown of hsa_circ_0000337 significantly inhibited cell proliferation, migration, and invasion in TE-1 and KYSE-150 cell lines. Bioinformatics predicted and luciferase reporter assay verified that hsa_circ_0000337 could bind to miR-670-5p, a ncRNA involved in carcinogenesis. It is estimated that 21 genes are regulated by miR-670-5p. CONCLUSION: hsa_circ_0000337 was found to be an upregulated circRNA that is related to ESCC and promotes the progression of disease by regulating cell proliferation, migration, and invasion. These findings suggest that this circRNA could be a promising diagnostic biomarker and potential therapeutic target.

8.
J Breast Cancer ; 21(3): 233-243, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30275851

ABSTRACT

Breast cancer has the highest incidence among all malignancies diagnosed in women. Therapies have significantly improved over the years due to extensive molecular and clinical research; in a large number of cases, targeted therapies have provided better prognosis. However, one specific subtype remains elusive to targeted therapies-the triple-negative breast cancer. This immunohistochemically defined subtype is resistant to both endocrine and targeted therapies, leading to its poor prognosis. A field that is of great promise in current cancer research is epigenetics. By studying the epigenetic mechanisms underlying tumorigenesis-DNA methylation, histone modifications, and noncoding RNAs-advances in cancer treatment, diagnosis, and prevention are possible. This review aims to synthesize the epigenetic discoveries that have been made related to the triple-negative breast cancer.

9.
Kidney Res Clin Pract ; 37(3): 197-209, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30254844

ABSTRACT

Diabetic kidney disease (DKD) is a major renal complication of diabetes that leads to renal dysfunction and end-stage renal disease (ESRD). Major features of DKD include accumulation of extracellular matrix proteins and glomerular hypertrophy, especially in early stage. Transforming growth factor-ß plays key roles in regulation of profibrotic genes and signal transducers such as Akt kinase and MAPK as well as endoplasmic reticulum stress, oxidant stress, and autophagy related to hypertrophy in diabetes. Many drugs targeting the pathogenic signaling in DKD (mostly through protein-coding genes) are under development. However, because of the limited number of protein-coding genes, noncoding RNAs (ncRNAs) including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are attracting more attention as potential new drug targets for human diseases. Some miRNAs and lncRNAs regulate each other (by hosting, enhancing transcription from the neighbor, hybridizing each other, and changing chromatin modifications) and create circuits and cascades enhancing the pathogenic signaling in DKD. In this short and focused review, the functional significance of ncRNAs (miRNAs and lncRNAs) in the early stages of DKD and their therapeutic potential are discussed.

10.
J Dent Res ; 97(7): 759-766, 2018 07.
Article in English | MEDLINE | ID: mdl-29533734

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a common type of cancer characterized by a low survival rate, mostly due to local recurrence and metastasis. In view of the importance of predicting tumor behavior in the choice of treatment strategies for OSCC, several studies have attempted to investigate the prognostic value of tissue biomarkers, including microRNA (miRNA). The purpose of this study was to perform a systematic review and meta-analysis to evaluate the relationship between miRNA expression and survival of OSCC patients. Studies were identified by searching on MEDLINE/PubMed, SCOPUS, Web of Science, and Google Scholar. Quality assessment of studies was performed with the Newcastle-Ottawa Scale. Data were collected from cohort studies comparing disease-free survival and overall survival in patients with high miRNA expression compared to those with low expression. A total of 15 studies featuring 1,200 OSCC samples, predominantly from Asia, met the inclusion criteria and were included in the meta-analysis. Poor prognosis correlated with upregulation of 9 miRNAs (miR-21, miR-455-5p, miiR-155-5p, miR-372, miR-373, miR-29b, miR-1246, miR-196a, and miR-181) and downregulation of 7 miRNAs (miR-204, miR-101, miR-32, miR-20a, miR-16, miR-17, and miR-125b). The pooled hazard ratio values (95% confidence interval) related to different miRNA expression for overall survival and disease-free survival were 2.65 (2.07-3.39) and 1.95 (1.28-2.98), respectively. The results of this meta-analysis revealed that the expression levels of specific miRNAs can robustly predict prognosis of OSCC patients.


Subject(s)
Carcinoma, Squamous Cell/metabolism , MicroRNAs/metabolism , Mouth Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Humans , Predictive Value of Tests , Prognosis , Survival Analysis
11.
Journal of Breast Cancer ; : 233-243, 2018.
Article in English | WPRIM (Western Pacific) | ID: wpr-716699

ABSTRACT

Breast cancer has the highest incidence among all malignancies diagnosed in women. Therapies have significantly improved over the years due to extensive molecular and clinical research; in a large number of cases, targeted therapies have provided better prognosis. However, one specific subtype remains elusive to targeted therapies–the triple-negative breast cancer. This immunohistochemically defined subtype is resistant to both endocrine and targeted therapies, leading to its poor prognosis. A field that is of great promise in current cancer research is epigenetics. By studying the epigenetic mechanisms underlying tumorigenesis–DNA methylation, histone modifications, and noncoding RNAs–advances in cancer treatment, diagnosis, and prevention are possible. This review aims to synthesize the epigenetic discoveries that have been made related to the triple-negative breast cancer.


Subject(s)
Female , Humans , Breast Neoplasms , Breast , Diagnosis , DNA Methylation , Epigenomics , Histone Code , Incidence , Methylation , Prognosis , RNA, Untranslated , Triple Negative Breast Neoplasms
12.
Article in English | WPRIM (Western Pacific) | ID: wpr-717219

ABSTRACT

Diabetic kidney disease (DKD) is a major renal complication of diabetes that leads to renal dysfunction and end-stage renal disease (ESRD). Major features of DKD include accumulation of extracellular matrix proteins and glomerular hypertrophy, especially in early stage. Transforming growth factor-β plays key roles in regulation of profibrotic genes and signal transducers such as Akt kinase and MAPK as well as endoplasmic reticulum stress, oxidant stress, and autophagy related to hypertrophy in diabetes. Many drugs targeting the pathogenic signaling in DKD (mostly through protein-coding genes) are under development. However, because of the limited number of protein-coding genes, noncoding RNAs (ncRNAs) including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are attracting more attention as potential new drug targets for human diseases. Some miRNAs and lncRNAs regulate each other (by hosting, enhancing transcription from the neighbor, hybridizing each other, and changing chromatin modifications) and create circuits and cascades enhancing the pathogenic signaling in DKD. In this short and focused review, the functional significance of ncRNAs (miRNAs and lncRNAs) in the early stages of DKD and their therapeutic potential are discussed.


Subject(s)
Humans , Autophagy , Chromatin , Diabetic Nephropathies , Endoplasmic Reticulum Stress , Extracellular Matrix Proteins , Hypertrophy , Kidney Failure, Chronic , MicroRNAs , Phosphotransferases , RNA, Long Noncoding , RNA, Untranslated , Signal Transduction , Transducers
13.
J Breast Cancer ; 18(3): 235-41, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26472973

ABSTRACT

PURPOSE: Circular RNAs (circRNAs), a novel class of RNAs, perform important functions in biological processes. However, the role of circRNAs in the mammary gland remains unknown. The present study is aimed at identifying and characterizing the circRNAs expressed in the mammary gland of lactating rats. METHODS: Deep sequencing of RNase R-enriched rat lactating mammary gland samples was performed and circRNAs were predicted using a previously reported computational pipeline. Gene ontology terms of circRNA-producing genes were also analyzed. RESULTS: A total of 6,824 and 4,523 circRNAs were identified from rat mammary glands at two different lactation stages. Numerous circRNAs were specifically expressed at different lactation stages, and only 1,314 circRNAs were detected at both lactation stages. The majority of the candidate circRNAs map to noncoding intronic and intergenic regions. The results demonstrate a circular preference or specificity of some genes. DAVID analysis revealed an enrichment of protein kinases and related proteins among the set of genes encoding circRNAs. Interestingly, four protein-coding genes (Rev3l, IGSF11, MAML2, and LPP) that also transcribe high levels of circRNAs have been reported to be involved in cancer. CONCLUSION: Our findings provide the basis for comparison between breast cancer profiles and for selecting representative circRNA candidates for future functional characterization in breast development and breast cancer.

15.
Journal of Breast Cancer ; : 235-241, 2015.
Article in English | WPRIM (Western Pacific) | ID: wpr-112054

ABSTRACT

PURPOSE: Circular RNAs (circRNAs), a novel class of RNAs, perform important functions in biological processes. However, the role of circRNAs in the mammary gland remains unknown. The present study is aimed at identifying and characterizing the circRNAs expressed in the mammary gland of lactating rats. METHODS: Deep sequencing of RNase R-enriched rat lactating mammary gland samples was performed and circRNAs were predicted using a previously reported computational pipeline. Gene ontology terms of circRNA-producing genes were also analyzed. RESULTS: A total of 6,824 and 4,523 circRNAs were identified from rat mammary glands at two different lactation stages. Numerous circRNAs were specifically expressed at different lactation stages, and only 1,314 circRNAs were detected at both lactation stages. The majority of the candidate circRNAs map to noncoding intronic and intergenic regions. The results demonstrate a circular preference or specificity of some genes. DAVID analysis revealed an enrichment of protein kinases and related proteins among the set of genes encoding circRNAs. Interestingly, four protein-coding genes (Rev3l, IGSF11, MAML2, and LPP) that also transcribe high levels of circRNAs have been reported to be involved in cancer. CONCLUSION: Our findings provide the basis for comparison between breast cancer profiles and for selecting representative circRNA candidates for future functional characterization in breast development and breast cancer.


Subject(s)
Animals , Female , Rats , Biological Phenomena , Breast , Breast Neoplasms , DNA, Intergenic , Gene Ontology , High-Throughput Nucleotide Sequencing , Introns , Lactation , Mammary Glands, Human , Phosphotransferases , Protein Kinases , Ribonucleases , RNA , RNA, Untranslated , Sensitivity and Specificity
16.
Oncologist ; 19(5): 483-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24718512

ABSTRACT

Only recently has it been uncovered that the mammalian transcriptome includes a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. Among numerous kinds of ncRNAs, short noncoding RNAs, such as microRNAs, have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. Long noncoding RNAs (lncRNAs) have only recently been implicated in playing a key regulatory role in cancer biology. The deregulation of ncRNAs has been demonstrated to have important roles in the regulation and progression of cancer development. In this review, we describe the roles of both short noncoding RNAs (including microRNAs, small nuclear RNAs, and piwi-interacting RNAs) and lncRNAs in carcinogenesis and outline the possible underlying genetic mechanisms, with particular emphasis on clinical applications. The focus of our review includes studies from the literature on ncRNAs in traditional endocrine-related cancers, including thyroid, parathyroid, adrenal gland, and gastrointestinal neuroendocrine malignancies. The current and potential future applications of ncRNAs in clinical cancer research is also discussed, with emphasis on diagnosis and future treatment.


Subject(s)
Adrenal Gland Neoplasms/genetics , MicroRNAs/genetics , Parathyroid Neoplasms/genetics , RNA, Long Noncoding/genetics , Thyroid Neoplasms/genetics , Humans , Pheochromocytoma/genetics
17.
Article in English | WPRIM (Western Pacific) | ID: wpr-47264

ABSTRACT

Polycomb repressive complex 2 (PRC2) is the epigenetic regulator that induces histone H3 lysine 27 methylation (H3K27me3) and silences specific gene transcription. Enhancer of zeste homolog 2 (EZH2) is an enzymatic subunit of PRC2, and evidence shows that EZH2 plays an essential role in cancer initiation, development, progression, metastasis, and drug resistance. EZH2 expression is indeed regulated by various oncogenic transcription factors, tumor suppressor miRNAs, and cancer-associated non-coding RNA. EZH2 activity is also controlled by post-translational modifications, which are deregulated in cancer. The canonical role of EZH2 is gene silencing through H3K27me3, but accumulating evidence shows that EZH2 methlyates substrates other than histone and has methylase-independent functions. These non-canonical functions of EZH2 are shown to play a role in cancer progression. In this review, we summarize current information on the regulation and roles of EZH2 in cancer. We also discuss various therapeutic approaches to targeting EZH2.


Subject(s)
Drug Resistance , Epigenomics , Gene Silencing , Histones , Lysine , Methylation , MicroRNAs , Neoplasm Metastasis , Polycomb Repressive Complex 2 , Protein Processing, Post-Translational , RNA, Untranslated , Transcription Factors , Transcription, Genetic
18.
Biol Res Nurs ; 15(4): 373-81, 2013 Oct.
Article in English | MEDLINE | ID: mdl-22661641

ABSTRACT

Epigenetic mechanisms provide an adaptive layer of control in the regulation of gene expression that enables an organism to adjust to a changing environment. Epigenetic regulation increases the functional complexity of deoxyribonucleic acid (DNA) by altering chromatin structure, nuclear organization, and transcript stability. These changes may additively or synergistically influence gene expression and result in long-term molecular and functional consequences independent of the DNA sequence that may ultimately define an individual's phenotype. This article (1) describes histone modification, DNA methylation, and expression of small noncoding RNA species; (2) reviews the most common methods used to measure these epigenetic changes; and (3) presents factors that need to be considered when choosing a specific tissue to evaluate for epigenetic changes.


Subject(s)
Chromatin/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Histones/genetics , RNA, Small Untranslated/genetics , Humans , Phenotype
19.
Gac. méd. Méx ; 144(6): 473-479, nov.-dic. 2008. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-567775

ABSTRACT

Objetivo: Describir la metodología de análisis de múltiples transcritos con técnicas de microarreglo en biopsias simultáneas de tejido muscular, adiposo y sangre en un mismo individuo, como parte de la estandarización del estudio GEMM (Genética de las Enfermedades Metabólicas en México). Material y métodos: Se incluyó a cuatro sujetos con índice de masa corporal (IMC) entre 20 y 41. Se registró estatura, talla y composición corporal. Se realizó biopsia muscular (vasto lateral), de tejido adiposo subcutáneo y muestra de sangre completa. El ARN total fue extraído de los tejidos y amplificado para análisis de microarreglos. Resultados: De 48 687 potenciales transcritos, 39.4% fue detectable en al menos uno de los tejidos. La expresión de leptina no fue detectable en linfocitos, débilmente expresada en músculo, alta expresión en el tejido adiposo y correlacionó con el IMC. El GLUT4 también ilustra la especificidad para el músculo sin verse afectado por el IMC. La concordancia en la expresión de transcritos fue 0.70 (p<0.001) para los tres tejidos. Conclusiones: Fue factible cuantificar simultáneamente la expresión genética de miles de transcritos, hubo concordancia en la expresión entre diferentes tejidos obtenidos en un mismo individuo, y confiabilidad del método al reproducir las relaciones biológicas esperadas. El estudio GEMM podrá analizar las correlaciones de los transcritos expresados dentro de un órgano y luego entre diferentes tejidos, y proveerá endofenotipos cuantitativos novedosos que proporcionarán un amplio panorama de información sobre las enfermedades metabólicas, incluyendo obesidad y diabetes tipo 2.


OBJECTIVE: We describe the methodology used to analyze multiple transcripts using microarray techniques in simultaneous biopsies of muscle, adipose tissue and lymphocytes obtained from the same individual as part of the standard protocol of the Genetics of Metabolic Diseases in Mexico: GEMM Family Study. METHODS: We recruited 4 healthy male subjects with BM1 20-41, who signed an informed consent letter. Subjects participated in a clinical examination that included anthropometric and body composition measurements, muscle biopsies (vastus lateralis) subcutaneous fat biopsies anda blood draw. All samples provided sufficient amplified RNA for microarray analysis. Total RNA was extracted from the biopsy samples and amplified for analysis. RESULTS: Of the 48,687 transcript targets queried, 39.4% were detectable in a least one of the studied tissues. Leptin was not detectable in lymphocytes, weakly expressed in muscle, but overexpressed and highly correlated with BMI in subcutaneous fat. Another example was GLUT4, which was detectable only in muscle and not correlated with BMI. Expression level concordance was 0.7 (p< 0.001) for the three tissues studied. CONCLUSIONS: We demonstrated the feasibility of carrying out simultaneous analysis of gene expression in multiple tissues, concordance of genetic expression in different tissues, and obtained confidence that this method corroborates the expected biological relationships among LEPand GLUT4. TheGEMM study will provide a broad and valuable overview on metabolic diseases, including obesity and type 2 diabetes.


Subject(s)
Humans , Male , Adult , Lymphocytes , Muscle, Skeletal , Gene Expression Profiling/methods , Subcutaneous Fat , Subcutaneous Fat/chemistry , Lymphocytes/chemistry , Mexico , Muscle, Skeletal/chemistry , RNA
SELECTION OF CITATIONS
SEARCH DETAIL