Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202404492, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38948941

ABSTRACT

While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.

2.
Ecotoxicol Environ Saf ; 276: 116335, 2024 May.
Article in English | MEDLINE | ID: mdl-38626603

ABSTRACT

Urethane hydrolase can degrade the carcinogen ethyl carbamate (EC) in fermented food, but its stability and activity limit its application. In this study, a mutant G246A and a double mutant N194V/G246A with improved cpUH activity and stability of Candida parapsilosis were obtained by site-directed mutagenesis. The catalytic efficiency (Kcat/Km) of mutant G246A and double mutant N194V/G246A are 1.95 times and 1.88 times higher than that of WT, respectively. In addition, compared with WT, the thermal stability and pH stability of mutant G246A and double mutant N194V/G246A were enhanced. The ability of mutant G246A and double mutant N194V/G246A to degrade EC in rice wine was also stronger than that of WT. The mutation increased the stability of the enzyme, as evidenced by decreased root mean square deviation (RMSD) and increased hydrogen bonds between the enzyme and substrate by molecular dynamics simulation and molecular docking analysis. The molecule modification of new cpUH promotes the industrial process of EC degradation.


Subject(s)
Candida parapsilosis , Ethanol , Oryza , Wine , Hydrogen-Ion Concentration , Candida parapsilosis/drug effects , Candida parapsilosis/genetics , Ethanol/metabolism , Molecular Docking Simulation , Mutagenesis, Site-Directed , Urethane/metabolism , Molecular Dynamics Simulation , Biodegradation, Environmental , Mutation , Enzyme Stability , East Asian People
3.
Angew Chem Int Ed Engl ; 62(9): e202216220, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36591907

ABSTRACT

Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester-polyurethanes by cutinases is known, the urethane bonds in polyether-polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether-polyurethane foam, making this strategy broadly applicable to diverse polyether-polyurethane wastes.


Subject(s)
Carbamates , Polyurethanes , Polyurethanes/chemistry , Hydrolysis , Molecular Weight , Recycling , Biodegradation, Environmental
4.
J Agric Food Chem ; 70(23): 7267-7278, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35653287

ABSTRACT

The amidase from Agrobacterium tumefaciens d3 (AmdA) degrades the carcinogenic ethyl carbamate (EC) in alcoholic beverages. However, its limited catalytic activity hinders practical applications. Here, multiple sequence alignment was first used to predict single variants with improved activity. Afterward, AlphaFold 2 was applied to predict the three-dimensional structure of AmdA and 21 amino acids near the catalytic triad were randomized by saturation mutagenesis. Each of the mutation libraries was then screened, and the improved single variants were combined to obtain the best double variant I97L/G195A that showed a 3.1-fold increase in the urethanase activity and a 1.5-fold increase in ethanol tolerance. MD simulations revealed that the mutations shortened the distance between catalytic residues and the substrate and enhanced the occurrence of a critical hydrogen bond in the catalytic pocket. This study displayed a useful strategy to engineer an amidase for the improvement of urethanase activity, and the variant obtained provided a good candidate for applications in the food industry.


Subject(s)
Agrobacterium tumefaciens , Amidohydrolases , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Amidohydrolases/chemistry , Carcinogens/metabolism , Urethane/metabolism
5.
Appl Microbiol Biotechnol ; 106(9-10): 3431-3438, 2022 May.
Article in English | MEDLINE | ID: mdl-35536404

ABSTRACT

Urethanase (EC 3.5.1.75) can reduce ethyl carbamate (EC), a group 2A carcinogen found in foods and liquor. However, it is not yet commercially available. Urethanase has been detected as an intracellular enzyme from yeast, filamentous fungi, and bacteria. Based on the most recent progress in the sequence analysis of this enzyme, it was observed that amidase-type enzyme can degrade EC. All five enzymes had highly conserved sequences of amidase signature family, and their molecular masses were in the range of 52-62 kDa. The enzymes of Candida parapsilosis and Aspergillus oryzae formed a homotetramer, and that of Rhodococcus equi strain TB-60 existed as a monomer. Most urethanases exhibited amidase activity, and those of C. parapsilosis and A. oryzae also demonstrated high activity against acrylamide, which is a group 2A carcinogen. It was recently reported that urease and esterase also exhibited urethanase activity. Although research on the enzymatic degradation of EC has been very limited, recently some sequences of EC-degrading enzyme have been elucidated, and it is anticipated that new enzymes would be developed and applied into practical use. KEY POINTS: • Recently, some urethanase sequences have been elucidated • The amino acid residues that formed the catalytic triad were conserved • Urethanase shows amidase activity and can also degrade acrylamide.


Subject(s)
Amidohydrolases , Urethane , Acrylamides , Amidohydrolases/metabolism , Carcinogens , Saccharomyces cerevisiae/metabolism , Urethane/metabolism
6.
J Biosci Bioeng ; 132(3): 220-225, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34148792

ABSTRACT

Ethyl carbamate (EC), widely found in alcoholic beverages, has been revealed to be a probable carcinogen in humans. Urethanase (EC 3.5.1.75) is an effective enzyme for the degradation of EC; however, the previously identified urethanases exhibited insufficient acid and alcohol resistance. In this study, an enantioselective amidase (AmdA) screened from Agrobacterium tumefaciens d3 exhibited urethanase activity with excellent alcohol resistance. AmdA was first overexpressed in Escherichia coli; however, the recombinant protein was primarily located in inclusion bodies, and thus, co-expression of molecular chaperones was used. The activity of AmdA increased 3.1 fold to 307 U/L, and the specific activity of urethanase with C-terminal His-tags reached 0.62 U/mg after purification through a Ni-NTA column. Subsequently, the enzymatic properties and kinetic constants of AmdA were investigated. The optimum temperature for AmdA was 55 °C, it showed the highest activity at pH 7.5, and the Km was 0.964 mM. Moreover, after 1 h of heat treatment at 37 °C in a 5-20% (v/v) ethanol solution, the residual urethanase activity was higher than 91%, considerably more than that reported thus far.


Subject(s)
Agrobacterium tumefaciens , Urethane , Amidohydrolases , Carbamates , Ethanol , Humans
7.
J Biosci Bioeng ; 130(6): 577-581, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32859525

ABSTRACT

Urethanase (EC 3.5.1.75) catalyzes the hydrolysis of ethyl carbamate (EC) to ethanol, carbon dioxide, and ammonia. From our recent study, we expected that an acetamidase encoded by amdS of Aspergillus oryzae may catalyze the degradation of EC because it is homologous with a Candida parapsilosis urethanase (CPUTNase) recently identified. Urethanase is a prospective candidate to reduce EC in alcoholic beverages, but knowledge of this enzyme is very limited. Recombinant AmdS was expressed to study its enzymatic properties. Purified AmdS was identified as a homo-tetramer consisting of four 60 kDa units and exhibited urethanase activity. In a 20% ethanol solution, AmdS had 65% activity compared with a solution without ethanol. Residual activity after 18 h indicated that AmdS was stable in 0%-40% ethanol solutions. The optimum temperature of AmdS was 40 °C. This enzyme showed urethanase activity at pH 6.4-9.6 and exhibited its highest activity at pH 9.6. The Km value of AmdS for EC was 8.2 mM, similar to the Km value (7.6 mM) of CPUTNase. AmdS showed activity not only for EC and acetamide but also other amide compounds. In this study, we investigated the enzymatic properties of AmdS that was identified as acetamidase and showed that an amidase can be an enzymatic candidate that degrades EC.


Subject(s)
Amidohydrolases/metabolism , Aspergillus oryzae/enzymology , Biocatalysis , Urethane/chemistry , Ethanol/chemistry , Hydrolysis
8.
J Biosci Bioeng ; 130(2): 115-120, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32253090

ABSTRACT

Urethanase (EC 3.5.1.75) is an effective enzyme for removing ethyl carbamate (EC) present in alcoholic beverages. However, urethanase is not well studied and has not yet been developed for practical use. In this study, we report a new urethanase (CPUTNase) from the yeast Candida parapsilosis. Because C. parapsilosis can assimilate EC as its sole nitrogen source, the enzyme was extracted from yeast cells and purified using ion-exchange chromatography. The CPUTNase was estimated as a homotetramer comprising four units of a 61.7 kDa protein. In a 20% ethanol solution, CPUTNase had 73% activity compared with a solution without ethanol. Residual activity after 18 h indicated that CPUTNase was stable in 0%-40% ethanol solutions. The optimum temperature of CPUTNase was 43°C. This enzyme showed urethanase activity at pH 5.5-10.0 and exhibited its highest activity at pH 10. The gene of CPUTNase was identified, and a recombinant enzyme was expressed in the yeast Saccharomyces cerevisiae. Characteristics of recombinant CPUTNase were identical to the native enzyme. The putative amino acid sequence indicated that CPUTNase was an amidase family protein. Further, substrate specificity supported this sequence analysis because CPUTNase showed higher activities toward amide compounds. These results suggest that amidase could be a candidate for urethanase. We discovered a new enzyme and investigated its enzymatic characteristics, sequence, and recombinant CPUTNase expression. These results contribute to a further understanding of urethanase.


Subject(s)
Amidohydrolases/isolation & purification , Amidohydrolases/metabolism , Candida parapsilosis/enzymology , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amino Acid Sequence , Candida parapsilosis/genetics , Chromatography, Ion Exchange , Enzyme Stability/drug effects , Ethanol/pharmacology , Gene Expression , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Substrate Specificity , Urethane/metabolism
9.
Sheng Wu Gong Cheng Xue Bao ; 35(4): 567-576, 2019 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-31001943

ABSTRACT

Ethyl carbamate (EC), a carcinogenic and teratogenic chemical that is widely distributed in various alcoholic beverages, has attracted much attention. Microbial enzymatic degradation of EC in rice wine is always efficient and attractive. In this review, we summarize the research progress and problems of microbial enzymatic elimination of EC in rice wine from three aspects: the mechanisms of EC formation in rice wine, the research progress of acid urease, and the research progress of urethanase. Then, we propose the corresponding strategies to solve the problems: screening new urethanase with satisfied enzyme properties, food-grade expression and directed evolution of the bifunctional Fe³âº-dependent acid urease and acid urease used in combination with urethanase to eliminate both urea and EC in rice wine.


Subject(s)
Wine , Oryza , Urea , Urease , Urethane
10.
Chinese Journal of Biotechnology ; (12): 567-576, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-771352

ABSTRACT

Ethyl carbamate (EC), a carcinogenic and teratogenic chemical that is widely distributed in various alcoholic beverages, has attracted much attention. Microbial enzymatic degradation of EC in rice wine is always efficient and attractive. In this review, we summarize the research progress and problems of microbial enzymatic elimination of EC in rice wine from three aspects: the mechanisms of EC formation in rice wine, the research progress of acid urease, and the research progress of urethanase. Then, we propose the corresponding strategies to solve the problems: screening new urethanase with satisfied enzyme properties, food-grade expression and directed evolution of the bifunctional Fe³⁺-dependent acid urease and acid urease used in combination with urethanase to eliminate both urea and EC in rice wine.


Subject(s)
Oryza , Urea , Urease , Urethane , Wine
11.
Mol Biotechnol ; 59(2-3): 84-97, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28197768

ABSTRACT

Urea in alcoholic beverage is a precursor of ethyl carbamate (EC), which is carcinogenic. Enzymatic elimination of urea has attracted much research interest. Acid urease with good tolerance toward ethanol and acid is ideal enzyme for such applications. In the present work, the structural genes of urease from Providencia rettgeri JN-B815, ureABC were efficiently expressed in E. coli BL21(DE3) in an active form (apourease) exhibiting both urease and urethanase (hydrolyze EC) activities. The specific activities of the purified apourease were comparatively low, which were 2.1 U/mg for urease and 0.6 U/mg for urethanase, respectively. However, apourease exhibited good resistance toward ethanol and acidic conditions. The relative activities of urease and urethanase remained over 80% in the buffers within pH 4-7. And the recoveries of both urease and urethanase activities were more than 50% in 5-25% ethanol solution. Apourease was utilized to eliminate urea in wine, and the residual urea in model wine was less than 50% after treatment with apourease for 30 h. Then 3D structure of UreC was predicted, and it was docked with urea and EC, respectively. The docking result revealed that three hydrogen bonds were formed between urea and amino acid residues in the active site of urease, whereas only one hydrogen bond can be formed between EC and the active center. Moreover, EC exhibited greater steric hindrance than urea when combined with the active site. Due to the low specific activities of apourease, both structural genes and accessory genes of urease were co-expressed in E. coli BL21(DE3). The holoenzyme was expressed as inclusion body. After renaturation and purification, the specific activities of urease and urethanase reached 10.7 and 3.8 U/mg, which were 5.62-fold and 6.33-fold of those of apourease, respectively. Therefore, accessory subunits of urease play an important role in enhancing urease and urethanase activities.


Subject(s)
Amidohydrolases/metabolism , Escherichia coli/genetics , Providencia/enzymology , Urea/chemistry , Urease/metabolism , Amidohydrolases/chemistry , Amidohydrolases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Enzyme Stability , Escherichia coli/enzymology , Holoenzymes/metabolism , Hydrogen-Ion Concentration , Molecular Docking Simulation , Providencia/genetics , Urease/chemistry , Urease/genetics , Wine/analysis
12.
Sheng Wu Gong Cheng Xue Bao ; 32(9): 1233-1242, 2016 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-29022324

ABSTRACT

Ethyl carbamate as a potential carcinogen commonly exists in traditional fermented foods and beverages. Enzymatic removal of ethyl carbamate from fermented foods and beverages is an efficient and safe method. In this study, we mutated urethanase from Lysinibacillus fusiformis SC02 on the Q328 site through computer aided design approaches. The half-life of resulting mutants Q328C and Q328V was detected to be 7.46 and 1.96 folds higher than that of the original enzyme, and Q328R presented better thermal-tolerance than the original urethanase when incubated at high temperature. The tolerance of Q328C to ethanol and acid also increased when compared with that of the original enzyme. The stability and tolerance to acid and ethanol of urethanase could be improved by modification on its Q328 site.


Subject(s)
Amidohydrolases/biosynthesis , Bacillaceae/enzymology , Bacterial Proteins/biosynthesis , Mutagenesis, Site-Directed , Amidohydrolases/genetics , Bacillaceae/genetics , Bacterial Proteins/genetics , Computer-Aided Design , Enzyme Stability , Ethanol , Protein Engineering
13.
Chinese Journal of Biotechnology ; (12): 1233-1242, 2016.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-310544

ABSTRACT

Ethyl carbamate as a potential carcinogen commonly exists in traditional fermented foods and beverages. Enzymatic removal of ethyl carbamate from fermented foods and beverages is an efficient and safe method. In this study, we mutated urethanase from Lysinibacillus fusiformis SC02 on the Q328 site through computer aided design approaches. The half-life of resulting mutants Q328C and Q328V was detected to be 7.46 and 1.96 folds higher than that of the original enzyme, and Q328R presented better thermal-tolerance than the original urethanase when incubated at high temperature. The tolerance of Q328C to ethanol and acid also increased when compared with that of the original enzyme. The stability and tolerance to acid and ethanol of urethanase could be improved by modification on its Q328 site.


Subject(s)
Amidohydrolases , Genetics , Bacillaceae , Genetics , Bacterial Proteins , Genetics , Computer-Aided Design , Enzyme Stability , Ethanol , Mutagenesis, Site-Directed , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...