Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Endocr Soc ; 8(8): bvae114, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38966710

ABSTRACT

Background: Diabetic nephropathy (DN) represents a major chronic kidney disorder and a leading cause of end-stage renal disease (ESRD). Small RNAs have been showing great promise as diagnostic markers as well as drug targets. Identifying dysregulated micro RNAs (miRNAs) could help in identifying disease biomarkers and investigation of downstream interactions, shedding light on the molecular pathophysiology of DN. In this study, we analyzed small RNAs within human urinary extracellular vesicles (ECVs) from DN patients using small RNA next-generation sequencing. Method: In this cross-sectional study, urine samples were collected from 88 participants who were divided into 3 groups: type 2 diabetes (T2D) with DN (T2D + DN, n = 20), T2D without DN (T2D - DN, n = 40), and healthy individuals (n = 28). The study focused on isolating urinary ECVs to extract and sequence small RNAs. Differentially expressed small RNAs were identified, and a functional enrichment analysis was conducted. Results: The study revealed a distinct subset of 13 miRNAs and 10 Piwi-interacting RNAs that were significantly dysregulated in urinary ECVs of the DN group when compared to other groups. Notably, miR-151a-3p and miR-182-5p exhibited a unique expression pattern, being downregulated in the T2D - DN group, and upregulated in the T2D + DN group, thus demonstrating their effectiveness in distinguishing patients between the 2 groups. Eight driver genes were identified PTEN, SMAD2, SMAD4, VEGFA, CCND2, CDK6, LIN28B, and CHD1. Conclusion: Our findings contribute valuable insights into the pathogenesis of DN, uncovering novel biomarkers and identifying potential therapeutic targets that may aid in managing and potentially decelerating the progression of the disease.

2.
J Extracell Biol ; 3(1): e136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938675

ABSTRACT

Urinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date. Here we explored stable reference genes through profiling the long RNA expression by RNA-seq following unsupervised analysis and validation studies. Candidate reference genes were identified using four algorithms: NormFinder, GeNorm, BestKeeper and the Delta Ct method, followed by validation. RNA profile showed uEVs contained abundant long RNAs information and the core transcriptome was related to cellular structures, especially ribosome which functions mainly as translation, protein and RNA binding molecules. Analysis of RNA-seq data identified RPL18A, RPL11, RPL27, RACK1, RPSA, RPL41, H1-2, RPL4, GAPDH, RPS27A as candidate reference genes. RT-qPCR validation revealed that RPL41, RPSA and RPL18A were reliable reference genes for long RNA quantification in uEVs from patients with diabetes mellitus (DM), diabetic nephropathy (DN), IgA nephropathy (IgAN) and prostate cancer (PCA). Interestingly, RPL41 also outperformed traditional reference genes in renal tissues of DN and IgAN, as well as in plasma EVs of several types of cancers. The stable reference genes identified in this study may facilitate development of uEVs as novel biomarkers and increase the accuracy and comparability of biomarker studies.

3.
BMC Nephrol ; 25(1): 158, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720274

ABSTRACT

BACKGROUND: Ureteropelvic junction obstruction (UPJO) is the most common cause of pediatric congenital hydronephrosis, and continuous kidney function monitoring plays a role in guiding the treatment of UPJO. In this study, we aimed to explore the differentially expressed proteins (DEPs) in the urinary extracellular vesicles(uEVs) of children with UPJO and determine potential biomarkers of uEVs proteins that reflect kidney function changes. METHODS: Preoperative urine samples from 6 unilateral UPJO patients were collected and divided into two groups: differential renal function (DRF) ≥ 40% and DRF < 40%.We subsequently used data-independent acquisition (DIA) to identify and quantify uEVs proteins in urine, screened for DEPs between the two groups, and analyzed biofunctional enrichment information. The proteomic data were evaluated by Western blotting and enzyme-linked immunosorbent assay (ELISA) in a new UPJO testing cohort. RESULTS: After one-way ANOVA, a P adj value < 0.05 (P-value corrected by Benjamin-Hochberg) was taken, and the absolute value of the difference multiple was more than 1.5 as the screening basis for obtaining 334 DEPs. After analyzing the enrichment of the DEPs according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment combined with the protein-protein interaction (PPI) network results, we selected nicotinamide adenine dinucleotide-ubiquinone oxidoreductase core subunit S1 (NDUFS1) for further detection. The expression of NDUFS1 in uEVs was significantly lower in patients with DRF < 40% (1.182 ± 0.437 vs. 1.818 ± 0.489, P < 0.05), and the expression level of NDUFS1 was correlated with the DRF in the affected kidney (r = 0.78, P < 0.05). However, the NDUFS1 concentration in intravesical urine was not necessarily related to the change in DRF (r = 0.28, P = 0.24). CONCLUSIONS: Reduced expression of NDUFS1 in uEVs might indicate the decline of DRF in children with UPJO.


Subject(s)
Biomarkers , Extracellular Vesicles , Ureteral Obstruction , Child, Preschool , Female , Humans , Male , Biomarkers/urine , Extracellular Vesicles/metabolism , Hydronephrosis/urine , Hydronephrosis/congenital , Kidney/metabolism , Kidney Pelvis , Proteomics/methods , Ureteral Obstruction/urine , Ureteral Obstruction/congenital
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499276

ABSTRACT

Unilateral nephrectomy, a procedure reducing kidney mass, triggers a compensatory response in the remaining kidney, increasing its size and function to maintain a normal glomerular filtration rate (GFR). Recent research has highlighted the role of extracellular vesicles (EVs) in renal physiology and disease, although their involvement in unilateral nephrectomy has been underexplored. In this study, unilateral nephrectomy was performed on young mice, and urinary extracellular vesicles (uEVs) characterization and cargo were analyzed. Kidney volume increased significantly post-nephrectomy, demonstrating compensatory hypertrophy. Serum creatinine, cystatin C, and urinary electrolytes concentrations were similar in both nephrectomized and control groups. Western blot analysis revealed upregulation of sodium-glucose cotransporter 2 (SGLT2) and sodium chloride cotransporter (NCC), and downregulation of sodium­potassium-chloride co-transporter (NKCC2) and epithelial sodium channel (ENaC) in the nephrectomized group. Metabolomic analysis of uEVs showed an enrichment of certain metabolites, including citrate and stachydrine. Interestingly, uEVs from the nephrectomized group demonstrated a protective effect, downregulating signal transducer and activator of transcription 3 (STAT3) and reducing reactive oxygen species (ROS) in renal proximal cells, compared to uEVs from the control group. This study suggests that uEVs contain bioactive components capable of inducing protective, anti-inflammatory, anti-fibrinolytic, and antioxidative effects in renal cells. These findings contribute to our understanding of uEVs' role in renal compensatory mechanisms after unilateral nephrectomy and may hold promise for future therapeutic interventions in renal diseases.


Subject(s)
Extracellular Vesicles , Hypertrophy , Kidney , Nephrectomy , Animals , Extracellular Vesicles/metabolism , Mice , Kidney/metabolism , Kidney/pathology , Hypertrophy/metabolism , Male , Metabolomics/methods , Mice, Inbred C57BL , STAT3 Transcription Factor/metabolism , Reactive Oxygen Species/metabolism
5.
Pediatr Nephrol ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093081

ABSTRACT

Most biological fluids contain extracellular vesicles (EVs). EVs are surrounded by a lipid bilayer and contain biological macromolecules such as proteins, lipids, RNA, and DNA. They lack a functioning nucleus and are incapable of replicating. The physiological characteristics and molecular composition of EVs in body fluids provide valuable information about the status of originating cells. Consequently, they could be effectively utilized for diagnostic and prognostic applications. Urine contains a heterogeneous population of EVs. To date, these urinary extracellular vesicles (uEVs) have been ignored in the standard urinalysis. In recent years, knowledge has accumulated on how uEVs should be separated and analyzed. It has become clear how uEVs reflect the expression of each molecule in cells in nephron segments and how they are altered in disease states such as glomerular/tubular disorders, rare congenital diseases, acute kidney injury (AKI), and chronic kidney disease (CKD). Significant promise exists for the molecular expression signature of uEVs detected by simple techniques such as enzyme-linked immunosorbent assay (ELISA), making them more applicable in clinical settings. This review presents the current understanding regarding uEVs, emphasizing the potential for non-invasive diagnostics, especially for childhood kidney diseases.

6.
Cell Biol Toxicol ; 39(6): 2569-2586, 2023 12.
Article in English | MEDLINE | ID: mdl-37953354

ABSTRACT

BACKGROUND: Urinary extracellular vesicles (EVs) have gained increasing interest in recent years as a potential source of noninvasive biomarkers of diseases related to urinary organs, but knowledge of the mechanism is still limited. The current study sought to clarify the mechanism of urinary EVs behind di-(2-ethylhexyl) phthalate (DEHP)-induced hypospadias via PFN2 delivery. METHOD: PFN2 expression in hypospadias was predicted by bioinformatics analysis. Following the induction of a hypospadias rat model using DEHP, rats were injected with EVs and/or underwent alteration of PFN2 and TGF-ß1 to assess their effects in vivo. The extracted rat urothelial cells (UECs) were co-cultured with EVs extracted from urine for in vitro experiments. RESULT: Microarray analysis predicted poor PFN2 expression in hypospadias. Upregulated PFN2 was found in urinary EVs, and restrained epithelial-mesenchymal transition (EMT) was observed in DEHP-exposed rats. Urinary EVs or PFN2 overexpression increased SMAD2, SMAD3, and TGF-ß1 protein expression and SMAD2 and SMAD3 phosphorylation in UECs and DEHP-exposed rats. UEC migration, invasion, and EMT were augmented by EV co-culture or upregulation of PFN2. Of note, the silencing of TGF-ß1 counterweighed the effect of PFN2. Besides, EV co-culture or overexpression of PFN2 or TGF-ß1 elevated the body weight, anal-genital distance (AGD), anal-genital index (AGI), and EMT of DEHP-exposed rats. CONCLUSION: In summary, urinary EVs activated the SMAD/TGF-ß1 pathway to induce EMT via PFN2 delivery, thus protecting against DEHP-induced hypospadias. (1) EMT in epithelial cells inhibits DEHP-induced hypospadias. (2) Urine-derived EVs deliver PFN2 to promote EMT in epithelial cells. (3) PFN2 can activate the SMAD/TGF-ß1 signaling axis. (4) Urine-derived EVs can transmit PFN2 to activate the SMAD/TGF-ß1 signaling axis, thus promoting EMT and inhibiting the occurrence of hypospadias.


Subject(s)
Diethylhexyl Phthalate , Hypospadias , Humans , Male , Rats , Animals , Transforming Growth Factor beta1/metabolism , Epithelial-Mesenchymal Transition , Hypospadias/chemically induced , Diethylhexyl Phthalate/toxicity , Profilins/pharmacology
7.
Methods Mol Biol ; 2718: 235-251, 2023.
Article in English | MEDLINE | ID: mdl-37665463

ABSTRACT

Urinary extracellular vesicles (uEVs) are a rich source of noninvasive protein biomarkers. However, for translation to clinical applications, an easy-to-use uEV isolation protocol is needed that is compatible with proteomics. Here, we provide a detailed description of a quick and clinical applicable uEV isolation protocol. We focus on the isolation procedure and subsequent in-depth proteome characterization using LC-MS/MS-based proteomics. As an example, we show how differential analyses can be performed using urine samples obtained from prostate cancer patients, compared to urine from controls.


Subject(s)
Extracellular Vesicles , Urinary Tract , Male , Humans , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry
8.
MethodsX ; 11: 102310, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37608961

ABSTRACT

Urine is a highly advantageous biological specimen for biomarker research and is a non-invasive source. Most of the urinary biomarkers are non-specific, volatile and need extensive validation before clinical adoption. Extracellular vesicles are secreted by almost all cells and are involved in homoeostasis, intercellular communication, and cellular processes in healthy and pathophysiological states. Urinary extracellular vesicles (UEVs) are released from the urogenital system and mirror the molecular processes of physiological and pathological states of their source cells. Therefore, UEVs serve as a valuable source of biomarkers for the non-invasive diagnosis of various pathologies. They hold a promising source of multiplex biomarkers suitable for prognosis, diagnosis, and therapy monitoring. UEVs are easily accessible, non-invasive, and suited for longitudinal sampling. Although various techniques are available for isolating UEVs, there is yet to be a consensus on a standard and ideal protocol. We have optimized an efficient, reliable, and easily adoptable polyethylene glycol (PEG) based UEV isolation technique following MISEV guidelines. The method is suitable for various downstream applications of UEVs. This could be a cost-effective, consistent, and accessible procedure for many clinical labs and is most suited for longitudinal analysis. Adopting the protocol will pave the way for establishing UEVs as the ideal biomarker source. •Urine can be collected non-invasively and repeatedly, hence a very useful specimen for biomarker discovery. Urinary EVs (UEVs), derived from urine, offer a stable diagnostic tool, but standardised isolation and analysis approaches are warranted.•To have enough UEVs for any study, large volumes of urine sample are necessary, which limits different isolation methods by cost, yield, and time.•The protocol developed could help researchers by offering a cost-effective and dependable UEV isolation method and may lay the foundation for UEVs adoption in clinical space.

9.
Clin Chim Acta ; 548: 117525, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37633321

ABSTRACT

BACKGROUND: Allograft dysfunction (AGD) is a common complication following solid organ transplantation (SOT). This study leverages the potential of urinary extracellular vesicles (UEVs) for the non-invasive detection of AGD. AIM: We aimed to assess the diagnostic value of T-cell and B-cell markers characteristic of T-cell-mediated and antibody-mediated rejection in UEV-mRNA using renal transplantation as a model. MATERIALS AND METHODS: UEVs were isolated from 123 participants, spanning healthy controls, functional transplant recipients, and biopsy-proven AGD patients. T-cell and B-cell marker mRNA expressions were evaluated using RT-qPCR. RESULTS: We observed significant differences in marker expression between healthy controls and AGD patients. ROC analysis revealed an AUC of 0.80 for T-cell markers, 0.98 for B-cell markers, and 0.94 for combined markers. T-cell markers achieved 81.3 % sensitivity, 80 % specificity, and 80.4 % efficiency. A triad of T-cell markers (PRF1, OX40, and CD3e) increased sensitivity to 87.5 % and efficiency to 82.1 %. B-cell markers (CD20, CXCL3, CD46, and CF3) delivered 100 % sensitivity and 97.5 % specificity. The combined gene signature of T-cell and B-cell markers offered 93.8 % sensitivity and 95 % specificity. CONCLUSION: Our findings underscore the diagnostic potential of UEV-derived mRNA markers for T-cells and B-cells in AGD, suggesting a promising non-invasive strategy for monitoring graft health.


Subject(s)
Extracellular Vesicles , Organ Transplantation , Humans , Transplantation, Homologous , CD3 Complex , RNA, Messenger/genetics , Allografts
10.
Genes (Basel) ; 14(7)2023 07 08.
Article in English | MEDLINE | ID: mdl-37510317

ABSTRACT

Urinary extracellular vesicles (uEV) hold non-invasive RNA biomarkers for genitourinary tract diseases. However, missing knowledge about reference genes and effects of preanalytical choices hinder biomarker studies. We aimed to assess how preanalytical variables (urine storage temperature, isolation workflow) affect diabetic kidney disease (DKD)-linked miRNAs or kidney-linked miRNAs and mRNAs (kidney-RNAs) in uEV isolates and to discover stable reference mRNAs across diverse uEV datasets. We studied nine raw and normalized sequencing datasets including healthy controls and individuals with prostate cancer or type 1 diabetes with or without albuminuria. We focused on kidney-RNAs reviewing literature for DKD-linked miRNAs from kidney tissue, cell culture and uEV/urine experiments. RNAs were analyzed by expression heatmaps, hierarchical clustering and selecting stable mRNAs with normalized counts (>200) and minimal coefficient of variation. Kidney-RNAs were decreased after urine storage at -20 °C vs. -80 °C. Isolation workflows captured kidney-RNAs with different efficiencies. Ultracentrifugation captured DKD -linked miRNAs that separated healthy and diabetic macroalbuminuria groups. Eleven mRNAs were stably expressed across the datasets. Hence, pre-analytical choices had variable effects on kidney-RNAs-analyzing kidney-RNAs complemented global correlation, which could fade differences in some relevant RNAs. Replicating prior DKD-marker results and discovery of candidate reference mRNAs encourages further uEV biomarker studies.


Subject(s)
Extracellular Vesicles , MicroRNAs , Male , Humans , Transcriptome , Kidney/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , RNA, Messenger/genetics
11.
Molecules ; 28(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513479

ABSTRACT

Diabetic nephropathy (DN) contributes to increased morbidity and mortality among patients with diabetes and presents a considerable global health challenge. However, reliable biomarkers of DN have not yet been established. Phosphorylated proteins are crucial for disease progression. However, their diagnostic potential remains unexplored. In this study, we used ultra-high-sensitivity quantitative phosphoproteomics to identify phosphoproteins in urinary extracellular vesicles (uEVs) as potential biomarkers of DN. We detected 233 phosphopeptides within the uEVs, with 47 phosphoproteins exhibiting significant alterations in patients with DN compared to those in patients with diabetes. From these phosphoproteins, we selected phosphorylated aquaporin-2 (p-AQP2[S256]) and phosphorylated glycogen synthase kinase-3ß (p-GSK3ß[Y216]) for validation, as they were significantly overrepresented in pathway analyses and previously implicated in DN pathogenesis. Both phosphoproteins were successfully confirmed through Phos-tag western blotting in uEVs and immunohistochemistry staining in kidney sections, suggesting that phosphoprotein alterations in uEVs reflect corresponding changes within the kidney and their potential as candidate biomarkers for DN. Our research proposes the utilization of phosphoproteins in uEVs as a liquid biopsy, presenting a highly feasible diagnostic tool for kidney disease.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Extracellular Vesicles , Humans , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/metabolism , Aquaporin 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Biomarkers/metabolism , Proteome/metabolism , Extracellular Vesicles/metabolism , Phosphoproteins/metabolism , Diabetes Mellitus/metabolism
12.
Hypertens Pregnancy ; 42(1): 2232029, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37417251

ABSTRACT

OBJECTIVE: To assess changes in expression of renal epithelial sodium channel (ENaC) and NEDD4L, a ubiquitin ligase, in urinary extracellular vesicles (UEV) of pre-eclamptic women compared to normal pregnant controls. METHODS: Urine was collected from pre-eclamptic women (PE, n = 20) or during normal pregnancy (NP, n = 20). UEV were separated by differential ultracentrifugation. NEDD4L, α-ENaC and γ-ENaC were identified by immunoblotting. RESULTS: There was no difference in the expression of NEDD4L (p = 0.17) and α-ENaC (p = 0.10). PE subjects showed increased expression of γ-ENaC by 6.9-fold compared to NP (p < 0.0001). CONCLUSION: ENaC expression is upregulated in UEV of pre-eclamptic subjects but was not associated with changes in NEDD4L.


Subject(s)
Extracellular Vesicles , Nedd4 Ubiquitin Protein Ligases , Pre-Eclampsia , Female , Humans , Pregnancy , Epithelial Sodium Channels/metabolism , Extracellular Vesicles/metabolism , Kidney , Pre-Eclampsia/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics
13.
Kidney Int Rep ; 8(6): 1201-1212, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37284683

ABSTRACT

Introduction: The putative "renal-K switch" mechanism links dietary potassium intake with sodium retention and involves activation of the sodium chloride (NaCl) cotransporter (NCC) in the distal convoluted tubule in response to low potassium intake, and suppression in response to high potassium intake. This study examined NCC abundance and phosphorylation (phosphorylated NCC [pNCC]) in urinary extracellular vesicles (uEVs) isolated from healthy adults on a high sodium diet to determine tubular responses to alteration in potassium chloride (KCl) intake. Methods: Healthy adults maintained on a high sodium (∼4.5 g [200 mmol]/d) low potassium (∼2.3 g [60 mmol]/d) diet underwent a 5-day run-in period followed by a crossover study, with 5-day supplementary KCl (active phase, Span-K 3 tablets (potassium 24 mmol) thrice daily) or 5-day placebo administrated in random order and separated by 2-day washout. Ambulatory blood pressure (BP) and biochemistries were assessed, and uEVs were analyzed by western blotting. Results: Among the 18 participants who met analysis criteria, supplementary KCl administration (vs. placebo) was associated with markedly higher levels of plasma potassium and 24-hour urine excretion of potassium, chloride, and aldosterone. KCl supplementation was associated with lower uEV levels of NCC (median fold change (KCl/Placebo) = 0.74 [0.30-1.69], P < 0.01) and pNCC (fold change (KCl/Placebo) = 0.81 [0.19-1.75], P < 0.05). Plasma potassium inversely correlated with uEV NCC (R2 = 0.11, P = 0.05). Conclusions: The lower NCC and pNCC in uEVs in response to oral KCl supplementation provide evidence to support the hypothesis of a functional "renal-K switch" in healthy human subjects.

14.
Front Endocrinol (Lausanne) ; 14: 1096441, 2023.
Article in English | MEDLINE | ID: mdl-37223008

ABSTRACT

Background: Urinary extracellular vesicles (uEVs) can be released by different cell types facing the urogenital tract and are involved in cellular trafficking, differentiation and survival. UEVs can be easily detected in urine and provide pathophysiological information "in vivo" without the need of a biopsy. Based on these premises, we hypothesized that uEVs proteomic profile may serve as a valuable tool in the differential characterization between Essential Hypertension (EH) and primary aldosteronism (PA). Methods: Patients with essential hypertension (EH) and PA were enrolled in the study (EH= 12, PA=24: 11 Bilateral Primary Aldosteronism subtype (BPA) and 13 Aldosterone Producing Adenoma (APA)). Clinical and biochemical parameters were available for all the subjects. UEVs were isolated from urine by ultracentrifugation and analysed by Transmission Electron Microscopy (TEM) and nanotrack particle analysis (NTA). UEVs protein content was investigated through an untargeted MS-based approach. Statistical and network analysis was performed to identify potential candidates for the identification and classification of PA. Results: MS analysis provided more than 300 protein identifications. Exosomal markers CD9 and CD63 were detected in all samples. Several molecules characterizing EH vs PA patients as well as BPA and APA subtypes were identified after statistical elaboration and filtering of the results. In particular, some key proteins involved in water reabsorption mechanisms, such as AQP1 and AQP2, were among the best candidates for discriminating EH vs PA, as well as A1AG1 (AGP1). Conclusion: Through this proteomic approach, we identified uEVs molecular indicators that can improve PA characterization and help in the gain of insights of the pathophysiological features of this disease. In particular, PA was characterized by a reduction of AQP1 and AQP2 expression as compared with EH.


Subject(s)
Extracellular Vesicles , Hyperaldosteronism , Humans , Aquaporin 2 , Proteomics , Essential Hypertension , Hyperaldosteronism/diagnosis
15.
Front Med (Lausanne) ; 10: 1143905, 2023.
Article in English | MEDLINE | ID: mdl-37035314

ABSTRACT

Introduction: Early initiation is essential for successful treatment of Fabry disease, but sensitive and noninvasive biomarkers of Fabry nephropathy are lacking. Urinary extracellular vesicles (uEVs) represent a promising source of biomarkers of kidney involvement. Among them, microRNAs (miRNAs) are important post-transcriptional regulators of gene expression that contribute to the development and progression of various kidney diseases. We aimed to identify uEV-derived miRNAs involved in the development and/or progression of Fabry nephropathy. Methods: Patients with genetically confirmed Fabry disease and matched control subjects were included. EVs were isolated from the second morning urine by size exclusion chromatography, from which miRNAs were extracted. miRNA urine exosome PCR panels were used to characterize the miRNA signature in a discovery cohort. Individual qPCRs were performed on a validation cohort that included chronological samples. We identified the target genes of dysregulated miRNAs and searched for potential hub genes. Enrichment analyses were performed to identify their potential function. Results: The expression of miR-21-5p and miR-222-3p was significantly higher in patients with stable renal function and those with progressive nephropathy compared with the corresponding controls. In addition, the expression of miR-30a-5p, miR-10b-5p, and miR-204-5p was significantly lower in patients with progressive nephropathy, however, in the chronological samples, this was only confirmed for miR-204-5p. Some of the identified hub genes controlled by the dysregulated miRNAs have been associated with kidney impairment in other kidney diseases. Conclusion: The miRNA cargo in uEVs changes with the development and progression of Fabry nephropathy and, therefore, represents a potential biomarker that may provide a new option to prevent or attenuate the progression of nephropathy. Furthermore, dysregulated miRNAs were shown to be potentially associated with pathophysiological pathways in the kidney.

16.
Microrna ; 12(2): 143-155, 2023.
Article in English | MEDLINE | ID: mdl-37098997

ABSTRACT

BACKGROUND: Unbiased microRNA profiling of renal tissue and urinary extracellular vesicles (uEVs) from diabetic nephropathy (DN) subjects may unravel novel targets with diagnostic and therapeutic potential. Here we used the miRNA profile of uEVs and renal biopsies from DN subjects available on the GEO database. METHODS: The miR expression profiles of kidney tissue (GSE51674) and urinary exosomes (GSE48318) from DN and control subjects were obtained by GEO2R tools from Gene Expression Omnibus (GEO) databases. Differentially expressed miRNAs in DN samples, relative to controls, were identified using a bioinformatic pipeline. Targets of miRs commonly regulated in both sample types were predicted by miRWalk, followed by functional gene enrichment analysis. Gene targets were identified by MiRTarBase, TargetScan and MiRDB. RESULTS: Eight miRs, including let-7c, miR-10a, miR-10b and miR-181c, were significantly regulated in kidney tissue and uEVs in DN subjects versus controls. The top 10 significant pathways targeted by these miRs included TRAIL, EGFR, Proteoglycan syndecan, VEGF and Integrin Pathway. Gene target analysis by miRwalk upon validation using ShinyGO 70 targets with significant miRNA-mRNA interaction. CONCLUSION: In silico analysis showed that miRs targeting TRAIL and EGFR signaling are predominately regulated in uEVs and renal tissue of DN subjects. After wet-lab validation, the identified miRstarget pairs may be explored for their diagnostic and/or therapeutic potential in diabetic nephropathy.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Exosomes , Extracellular Vesicles , MicroRNAs , Humans , MicroRNAs/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/metabolism , Exosomes/metabolism , ErbB Receptors/metabolism
17.
Front Endocrinol (Lausanne) ; 14: 1085133, 2023.
Article in English | MEDLINE | ID: mdl-37077361

ABSTRACT

Background: Urinary extracellular vesicles (uEVs) are derived from epithelia facing the renal tubule lumen in the kidney and urogenital tract; they may carry protein biomarkers of renal dysfunction and structural injury. However, there are scarce studies focusing on uEVs in diabetes with kidney injury. Materials and methods: A community-based epidemiological survey was performed, and the participants were randomly selected for our study. uEVs were enriched by dehydrated dialysis method, quantified by Coomassie Bradford protein assay, and adjusted by urinary creatinine (UCr). Then, they identified by transmission electron microscopy (TEM), nanoparticle track analysis (NTA), and western blot of tumor susceptibility gene 101. Results: Decent uEVs with a homogeneous distribution were finally obtained, presenting a membrane-encapsulated structure like cup-shaped or roundish under TEM, having active Brownian motion, and presenting the main peak between 55 and 110 nm under NTA. The Bradford protein assay showed that the protein concentrations of uEVs were 0.02 ± 0.02, 0.04 ± 0.05, 0.05 ± 0.04, 0.07 ± 0.08, and 0.11 ± 0.15 µg/mg UCr, respectively, in normal controls and in prediabetes, diabetes with normal proteinuria, diabetes with microalbuminuria, and diabetes with macroproteinuria groups after adjusting the protein concentration with UCr by calculating the vesicles-to-creatinine ratio. Conclusion: The protein concentration of uEVs in diabetes with kidney injury increased significantly than the normal controls before and after adjusting the UCr. Therefore, diabetes with kidney injury may change the abundance and cargo of uEVs, which may be involved in the physiological and pathological changes of diabetes.


Subject(s)
Extracellular Vesicles , Prediabetic State , Humans , Creatinine , Kidney/metabolism , Extracellular Vesicles/metabolism , Kidney Tubules , Prediabetic State/metabolism
19.
Diagnostics (Basel) ; 13(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36766548

ABSTRACT

Extracellular vesicles are a diverse group of particles that include exosomes, microvesicles, and apoptotic bodies and are defined by size, composition, site of origin, and density. They incorporate various bioactive molecules from their cell of origin during formation, such as soluble proteins, membrane receptors, nucleic acids (mRNAs and miRNAs), and lipids, which can then be transferred to target cells. Extracellular vesicles/exosomes have been extensively studied as a critical factor in pathophysiological processes of human diseases. Urinary extracellular vesicles could be a promising liquid biopsy for determining the pattern and/or severity of kidney histologic injury. The signature of urinary extracellular vesicles may pave the way for noninvasive methods to supplement existing testing methods for diagnosing kidney diseases. We discuss the potential role of urinary extracellular vesicles in various chronic kidney diseases in this review, highlighting open questions and discussing the potential for future research.

20.
Kidney360 ; 3(11): 1909-1923, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36514401

ABSTRACT

Background: Elevated abundance of sodium-chloride cotransporter (NCC) and phosphorylated NCC (pNCC) are potential markers of primary aldosteronism (PA), but these effects may be driven by hypokalemia. Methods: We measured plasma potassium in patients with PA. If potassium was <4.0 mmol/L, patients were given sufficient oral potassium chloride (KCl) over 24 hours to achieve as close to 4.0 mmol/L as possible. Clinical chemistries were assessed, and urinary extracellular vesicles (uEVs) were examined to investigate effects on NCC. Results: Among 21 patients with PA who received a median total dose of 6.0 g (2.4-16.8 g) of KCl, increases were observed in plasma potassium (from 3.4 to 4.0 mmol/L; P<0.001), aldosterone (from 305 to 558 pmol/L; P=0.01), and renin (from 1.2 to 2.5 mIU/L; P<0.001), whereas decreases were detected in uEV levels of NCC (median fold change(post/basal) [FC]=0.71 [0.09-1.99]; P=0.02), pT60-NCC (FC=0.84 [0.06-1.66]; P=0.05), and pT55/60-NCC (FC=0.67 [0.08-2.42]; P=0.02). By contrast, in 10 patients with PA who did not receive KCl, there were no apparent changes in plasma potassium, NCC abundance, and phosphorylation status, but increases were observed in plasma aldosterone (from 178 to 418 pmol/L; P=0.006) and renin (from 2.0 to 3.0 mU/L; P=0.009). Plasma potassium correlated inversely with uEV levels of NCC (R 2=0.11; P=0.01), pT60-NCC (R 2=0.11; P=0.01), and pT55/60-NCC (R 2=0.11; P=0.01). Conclusions: Acute oral KCl loading replenished plasma potassium in patients with PA and suppressed NCC abundance and phosphorylation, despite a significant rise in plasma aldosterone. This supports the view that potassium supplementation in humans with PA overrides the aldosterone stimulatory effect on NCC. The increased plasma aldosterone in patients with PA without KCl supplementation may be due to aldosterone response to posture challenge.


Subject(s)
Hyperaldosteronism , Sodium Chloride Symporters , Humans , Aldosterone , Potassium Chloride/pharmacology , Renin , Phosphorylation , Potassium , Hyperaldosteronism/drug therapy , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...