Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 402
Filter
1.
Arch Gynecol Obstet ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987459

ABSTRACT

PURPOSE: This study aimed to demonstrate the correlation between altered balance of the vaginal ecosystem and increased risk of vaginitis, bacterial vaginosis, and sexually transmitted diseases and the association between specific alterations found in fresh bacterioscopic examinations (FBE) and the risk of certain infections. METHODS: A retrospective, monocentric study was conducted from January 2013 to December 2023. Patients who underwent FBE and vaginal swabs following reported symptoms or suspected syndromic pictures of vulvovaginal infections were included. RESULTS: Two thousand one hundred ten patients were included and divided into a control group (n = 811, 38.4%) and a pathological group (n = 1299 patients, 61.6%), based on the presence of alterations at the FBE. In the pathological group, 1185 women (91% of positive FBE) had vaginal infections detected through vaginal swabs. The presence of lactobacilli and typical inflammatory cells was detected in 111 (8%) women with pathological FBE and correlated with higher rates of positive swabs for common germs (n = 104, 94%), often leading to co-infections (n = 30, 29%). Conversely, Döderlein's cytolysis (n = 56, 4.3% of positive FBE) indicated a predominance of positive human papillomavirus (HPV) swabs (n = 33, 59%). The presence of fungal elements (n = 208, 16% of positive FBE) suggested a higher prevalence of co-infections (n = 62, 30%). Similarly, mixed bacterial flora (n = 470, 36% of positive FBE) and Trichomonas vaginalis (n = 11, 0.8% of positive FBE) correlated with positive swabs for other pathogens, except for Mycoplasma (n = 0). Bacterial vaginosis (n = 443, 34% of positive FBE) was linked to co-infections (n = 142, 32%) and HPV (n = 123, 28%). CONCLUSION: The importance of conducting FBE in patients with vulvovaginal symptoms is emphasized. This approach aids in determining the need for further diagnostic tests like vaginal swabs, guided by microscopic findings. A strong correlation emerges between the presence of specific alterations in the FBE and an increased prevalence of certain infections.

2.
BMC Pregnancy Childbirth ; 24(1): 427, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877443

ABSTRACT

OBJECTIVE: The vaginal microbiota dysbiosis induces inflammation in the uterus that triggers tissue damage and is associated with preterm birth. Progesterone is used to prevent labor in pregnant women at risk of preterm birth. However, the mechanism of action of progesterone still needs to be clarified. We aimed to show the immunomodulatory effect of progesterone on the inflammation of uterine tissue triggered by dysbiotic vaginal microbiota in a pregnant mouse model. METHODS: Healthy (n = 6) and dysbiotic (n = 7) vaginal microbiota samples isolated from pregnant women were transferred to control (n = 10) and dysbiotic (n = 14) pregnant mouse groups. The dysbiotic microbiota transferred group was treated with 1 mg progesterone (n = 7). Flow cytometry and immunohistochemistry analyses were used to evaluate inflammatory processes. Vaginal microbiota samples were analyzed by 16 S rRNA sequencing. RESULTS: Vaginal exposure to dysbiotic microbiota resulted in macrophage accumulation in the uterus and cellular damage in the placenta. Even though TNF and IL-6 elevations were not significant after dysbiotic microbiota transplantation, progesterone treatment decreased TNF and IL-6 expressions from 49.085 to 31.274% (p = 0.0313) and 29.279-21.216% (p = 0.0167), respectively. Besides, the macrophage density in the uterus was reduced, and less cellular damage in the placenta was observed. CONCLUSION: Analyzing the vaginal microbiota before or during pregnancy may support the decision for initiation of progesterone therapy. Our results also guide the development of new strategies for preventing preterm birth.


Subject(s)
Dysbiosis , Microbiota , Placenta , Progesterone , Uterus , Vagina , Female , Pregnancy , Vagina/microbiology , Vagina/pathology , Placenta/microbiology , Mice , Humans , Animals , Uterus/microbiology , Uterus/pathology , Microbiota/drug effects , Premature Birth/prevention & control , Premature Birth/microbiology , Disease Models, Animal , Progestins/therapeutic use , Progestins/pharmacology
3.
J Clin Med ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929949

ABSTRACT

Background: In this investigation, we aimed to understand the influence of oral probiotic supplementation on the vaginal microbiota of women preparing for assisted reproductive technology (ART) procedures. Given the importance of a healthy microbiome for reproductive success, this study sought to explore how probiotics might alter the bacterial composition in the vaginal environment. Methods: We recruited a cohort of 30 women, averaging 37 years of age (ranging from 31 to 43 years), who were scheduled to undergo ART. Using 16S ribosomal RNA (rRNA) sequencing, we meticulously analyzed the vaginal microbiota composition before and after the administration of oral probiotic supplements. Results: Our analysis identified 17 distinct microorganisms, including 8 species of Lactobacillus. Following probiotic supplementation, we observed subtle yet notable changes in the vaginal microbiota of some participants. Specifically, there was a decrease in Gardnerella abundance by approximately 20%, and increases in Lactobacillus and Bifidobacterium by 10% and 15%, respectively. Additionally, we noted a significant reduction in the Firmicutes/Bacteroidetes (F/B) ratio in the probiotic group, indicating potential shifts in the overall bacterial composition. Conclusions: These preliminary findings suggest that oral probiotic supplementation can induce significant changes in the vaginal microbiota of middle-aged women undergoing ART, potentially improving their overall bacterial profile. Future studies should consider a larger sample size and a narrower age range to validate these results. Investigating factors related to female hormone production could also provide deeper insights. Understanding the effects of probiotics on the vaginal microbiota in patients with ovarian aging may lead to personalized interventions and better reproductive outcomes.

4.
BJU Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890150

ABSTRACT

OBJECTIVE: To comprehensively review and critically assess the literature on microbiota differences between patients with interstitial cystitis (IC)/bladder pain syndrome (BPS) and normal controls and to provide clinical practice guidelines. MATERIALS AND METHODS: In this systematic review, we evaluated previous research on microbiota disparities between IC/BPS and normal controls, as well as distinctions among IC/BPS subgroups. A comprehensive literature search was conducted across PubMed/MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials. Relevant studies were shortlisted based on predetermined inclusion and exclusion criteria, followed by quality assessment. The primary focus was identifying specific taxonomic variations among these cohorts. RESULTS: A total of 12 studies met the selection criteria. Discrepancies were adjudicated by a third reviewer. The Newcastle-Ottawa Scale was used to assess study quality. Predominantly, the studies focused on disparities in urine microbiota between IC/BPS patients and normal controls, with one study examining gut microbiota differences between the groups, and two studies exploring vaginal microbiota distinctions. Unfortunately, analyses of discrepancies in other microbiota were limited. Our findings revealed evidence of distinct bacterial abundance variations, particularly involving Lactobacillus, alongside variations in specific metabolites among IC/BPS patients compared to controls. CONCLUSIONS: Currently, there is evidence suggesting significant variations in the diversity and species composition of the urinary microbiota between individuals diagnosed with IC/BPS and control groups. In the foreseeable future, urologists should consider urine microbiota dysbiosis as a potential aetiology for IC, with potential clinical implications for diagnosis and treatment.

5.
PeerJ ; 12: e17415, 2024.
Article in English | MEDLINE | ID: mdl-38881859

ABSTRACT

Background: Cancer has surpassed infectious diseases and heart ailments, taking the top spot in the disease hierarchy. Cervical cancer is a significant concern for women due to high incidence and mortality rates, linked to the human papillomavirus (HPV). HPV infection leads to precancerous lesions progressing to cervical cancer. The cervix's external os, near the vagina, hosts various microorganisms. Evidence points to the link between vaginal microbiota and HPV-induced cervical cancer. Cervical cancer onset aligns with an imbalanced Th1/Th2 immune response, but the role of vaginal microbiota in modulating this imbalance is unclear. Methods: In this study, we collected vaginal samples from 99 HPV-infected patients across varying degrees of lesions, alongside control groups. These samples underwent bacterial DNA sequencing. Additionally, we employed Elisa kits to quantify the protein expression levels of Th1/Th2 cytokines IL2, IL12, IL5, IL13, and TNFa within the centrifuged supernatant of vaginal-cervical secretions from diverse research subjects. Subsequently, correlation analyses were conducted between inflammatory factors and vaginal microbiota. Results: Our findings highlighted a correlation between decreased Lactobacillus and increased Gardenerella presence with HPV-induced cervical cancer. Functionally, our predictive analysis revealed the predominant enrichment of the ABC transporter within the vaginal microbiota of cervical cancer patients. Notably, these microbiota alterations exhibited correlations with the production of Th1/Th2 cytokines, which are intimately tied to tumor immunity. Conclusions: This study suggests the potential involvement of vaginal microbiota in the progression of HPV-induced cervical cancer through Th1/Th2 cytokine regulation. This novel insight offers a fresh perspective for early cervical cancer diagnosis and future prevention strategies.


Subject(s)
Microbiota , Papillomavirus Infections , Uterine Cervical Neoplasms , Vagina , Humans , Female , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/microbiology , Uterine Cervical Neoplasms/pathology , Vagina/microbiology , Vagina/immunology , Vagina/virology , Microbiota/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Adult , Inflammation/immunology , Inflammation/microbiology , Middle Aged , Cytokines/metabolism , Cervix Uteri/microbiology , Cervix Uteri/immunology , Cervix Uteri/virology
6.
Front Vet Sci ; 11: 1392399, 2024.
Article in English | MEDLINE | ID: mdl-38895713

ABSTRACT

Pectin is a proven prebiotic and widely used in human health products. This study aims to assess the impact of dietary pectin supplementation during gestation on sow vaginal microbiota and the offspring's intestinal composition. Thirty sows were randomly allocated to two groups and fed a standard diet (CON) or a standard diet supplemented with 3 g/kg pectin (PEC). Blood, feces, and vaginal swab samples from the sows and blood, intestines issue, and colonic content samples from the offspring were collected and analyzed. The results indicate that the relative abundance of vaginal Lactobacillus was notably enhanced in the PEC group and fecal ß-glucuronidase (ß-G) activity and plasma 17ß-estradiol (E2) concentration were also significantly increased in the PEC group. Newborn piglets were found to host different microbial communities as well. At the phylum level, Proteobacteria dominated in the CON group, and Firmicutes was predominant in the PEC group. Newborn piglets in the PEC group had a lower interleukin-6 (IL-6) concentration in their plasma. The expression of intestinal cytokines of offspring was improved as well. Villus height and villus height/crypt depth (V/C) in the PEC group were extremely higher than those in the CON group. In conclusion, dietary pectin supplementation can be of benefit to both sows and newborn piglets.

7.
Arch Microbiol ; 206(7): 306, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878076

ABSTRACT

In an age of cutting-edge sequencing methods and worldwide endeavors such as The Human Microbiome Project and MetaHIT, the human microbiome stands as a complex and diverse community of microorganisms. A central theme in current scientific inquiry revolves around reinstating a balanced microbial composition, referred to as "eubiosis," as a targeted approach for treating vast array of diseases. Vaginal Microbiota Transplantation (VMT), inspired by the success of fecal microbiota transplantation, emerges as an innovative therapy addressing vaginal dysbacteriosis by transferring the complete microbiota from a healthy donor. Antibiotics, while effective, pose challenges with adverse effects, high recurrence rates, and potential harm to beneficial Lactobacillus strains. Continued antibiotic usage also sparks worries regarding the development of resistant strains. Probiotics, though showing promise, exhibit inconsistency in treating multifactorial diseases, and concerns linger about their suitability for diverse genetic backgrounds. Given the recurrent challenges associated with antibiotic and probiotic treatments, VMT emerges as an imperative alternative, offering a unique and promising avenue for efficiently and reliably managing vaginal dysbiosis among a majority of women. This review critically evaluates findings from both animal and human studies, offering nuanced insights into the efficacy and challenges of VMT. An extensive analysis of clinical trials, provides a current overview of ongoing and completed trials, shedding light on the evolving clinical landscape and therapeutic potential of VMT. Delving into the origins, mechanisms, and optimized protocols of VMT, the review underscores the imperative for sustained research efforts to advance this groundbreaking gynecological therapy.


Subject(s)
Dysbiosis , Microbiota , Probiotics , Vagina , Animals , Female , Humans , Anti-Bacterial Agents/therapeutic use , Dysbiosis/microbiology , Dysbiosis/therapy , Lactobacillus , Probiotics/administration & dosage , Vagina/microbiology
8.
Microbiol Spectr ; 12(6): e0362323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38722155

ABSTRACT

The vaginal microbiota plays a pivotal role in reproductive, sexual, and perinatal health and disease. Unlike the well-established connections between diet, metabolism, and the intestinal microbiota, parallel mechanisms influencing the vaginal microbiota and pathogen colonization remain overlooked. In this study, we combine a mouse model of Streptococcus agalactiae strain COH1 [group B Streptococcus (GBS)] vaginal colonization with a mouse model of pubertal-onset obesity to assess diet as a determinant of vaginal microbiota composition and its role in colonization resistance. We leveraged culture-dependent assessment of GBS clearance and culture-independent, sequencing-based reconstruction of the vaginal microbiota in relation to diet, obesity, glucose tolerance, and microbial dynamics across time scales. Our findings demonstrate that excessive body weight gain and glucose intolerance are not associated with vaginal GBS density or timing of clearance. Diets high in fat and low in soluble fiber are associated with vaginal GBS persistence, and changes in vaginal microbiota structure and composition due to diet contribute to GBS clearance patterns in nonpregnant mice. These findings underscore a critical need for studies on diet as a key determinant of vaginal microbiota composition and its relevance to reproductive and perinatal outcomes.IMPORTANCEThis work sheds light on diet as a key determinant influencing the composition of vaginal microbiota and its involvement in group B Streptococcus (GBS) colonization in a mouse model. This study shows that mice fed diets with different nutritional composition display differences in GBS density and timing of clearance in the female reproductive tract. These findings are particularly significant given clear links between GBS and adverse reproductive and neonatal outcomes, advancing our understanding by identifying critical connections between dietary components, factors originating from the intestinal tract, vaginal microbiota, and reproductive outcomes.


Subject(s)
Diet , Streptococcal Infections , Streptococcus agalactiae , Vagina , Vagina/microbiology , Female , Animals , Streptococcus agalactiae/growth & development , Mice , Streptococcal Infections/microbiology , Microbiota/physiology , Obesity/microbiology , Mice, Inbred C57BL , Disease Models, Animal , Humans
9.
Arch Gynecol Obstet ; 310(1): 369-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38771532

ABSTRACT

BACKGROUND: The vaginal microbiota plays a significant role in pregnancy outcomes and newborn health. Indeed, the composition and diversity of the vaginal microbiota can vary among different ethnic groups. Our study aimed to investigate the composition of the vaginal microbiome throughout the three trimesters of pregnancy and to identify any potential variations or patterns in the Turkish population compromising mixed ethnicities. METHOD: We conducted a longitudinal study to characterize the vaginal microbiota of pregnant women. The study included a total of 25 participants, and the samples were collected at each trimester: 11-13 weeks, 20-24 weeks and 28-34 weeks gestation. RESULTS: Lactobacillus species were consistently found to be dominant in the vaginal microbiota throughout all trimesters of pregnancy. Among Lactobacillus species, L. crispatus had the highest abundance in all trimesters (40.6%, 40.8% and 44.4%, respectively). L. iners was the second most prevalent species (28.5%, 31% and 25.04, respectively). Our findings reveal that the dominant composition of the vaginal microbiota aligns with the CST-type I, commonly observed in the European population. CONCLUSIONS: This suggests that there are shared mechanisms influencing the microbial communities in the vagina, which are likely influenced by factors such as genetics, lifestyle, and cultural behaviors rather than ethnicity alone. The complex interplay of these factors contributes to the establishment and maintenance of the vaginal microbiota during pregnancy. Understanding the underlying mechanisms and their impact on vaginal health across diverse populations is essential for improving pregnancy outcomes. The study was approved by the Koc University Ethical Committee (no:2019.093.IRB2.030) and registered at the clinical trials.


Subject(s)
Lactobacillus , Microbiota , Vagina , Humans , Female , Vagina/microbiology , Pregnancy , Adult , Longitudinal Studies , Lactobacillus/isolation & purification , Turkey/ethnology , Pregnancy Trimesters , Young Adult , Ethnicity , Lactobacillus crispatus/isolation & purification
10.
Microorganisms ; 12(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38792859

ABSTRACT

The vaginal microbiota can be classified into five major community state types (CSTs) based on the bacterial content. However, the link between different CST subtypes and vaginal infection remains unclear. Here, we analyzed 2017 vaginal microbiota samples from women of a reproductive age with vaginal infections that were published in the last decade. We found that L. iners was the most dominant in 34.8% of the vaginal samples, followed by L. crispatus (21.2%). CST I was common in healthy individuals, whereas CST III and IV were associated with dysbiosis and infection. CST III-B, IV-A, IV-B, and IV-C0 were prevalent in patients with bacterial vaginosis (BV). Based on the relative abundance of bacteria at the (sub)genus level, a random forest classifier was developed to predict vaginal infections with an area under the curve of 0.83. We further identified four modules of co-occurring bacterial taxa: L. crispatus, Gardnerella, Prevotella, and Bacteroides. The functional prediction revealed that nucleotide biosynthesis pathways were upregulated in patients with human papilloma virus, and carbohydrate degradation pathways were downregulated in patients with BV. Overall, our study identified the bacterial signatures of healthy and infected vaginal microbiota, providing unique insights into the clinical diagnosis and health status prediction of women of a reproductive age.

11.
Reprod Biol ; 24(3): 100899, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38805904

ABSTRACT

Preterm birth affects approximately 15 million women worldwide, of which 30 % is due to preterm premature rupture of membranes (PPROM). The reasons for shortening the duration of pregnancy are seen in genetic, hormonal, immunological and socio-economic conditions. Recent years have provided a lot of evidence on the impact of the microbiota and whole microbiome on pregnant women, suggesting that the microorganisms inhabiting the vagina significantly affect the risk of preterm delivery. The aim of the study was to review studies evaluating the composition of the vaginal microflora and its role in the occurrence of preterm labor caused by PPROM, and to evaluate the potential beneficial effect of probiotics on preventing the development of preterm labor. Vaginal microbial dysbiosis is observed in PPROM, which, due to its association with a high risk of prematurity and infection, increases neonatal morbidity and mortality. Further research on biomarkers for screening, early prognosis and diagnosis of PPROM seems advisable. Probiotics as a potential intervention can prevent the development of pathological vaginal flora, reducing the risk of infection in women planning pregnancy and pregnant women.

12.
Microbiome ; 12(1): 99, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802950

ABSTRACT

BACKGROUND: Vaginal microbiota composition is associated with spontaneous preterm birth (sPTB), depending on ethnicity. Host-microbiota interactions are thought to play an important underlying role in this association between ethnicity, vaginal microbiota and sPTB. METHODS: In a prospective cohort of nulliparous pregnant women, we assessed vaginal microbiota composition, vaginal immunoglobulins (Igs), and local inflammatory markers. We performed a nested case-control study with 19 sPTB cases, matched based on ethnicity and midwifery practice to 19 term controls. RESULTS: Of the 294 included participants, 23 pregnancies ended in sPTB. We demonstrated that Lactobacillus iners-dominated microbiota, diverse microbiota, and ethnicity were all independently associated with sPTB. Microbial Ig coating was associated with both microbiota composition and ethnicity, but a direct association with sPTB was lacking. Microbial IgA and IgG coating were lowest in diverse microbiota, especially in women of any ethnic minority. When correcting for microbiota composition, increased microbial Ig coating correlated with increased inflammation. CONCLUSION: In these nulliparous pregnant women, vaginal microbiota composition is strongly associated with sPTB. Our results support that vaginal mucosal Igs might play a pivotal role in microbiota composition, microbiota-related inflammation, and vaginal community disparity within and between ethnicities. This study provides insight in host-microbe interaction, suggesting that vaginal mucosal Igs play an immunomodulatory role similar to that in the intestinal tract. Video Abstract.


Subject(s)
Ethnicity , Lactobacillus , Microbiota , Premature Birth , Vagina , Humans , Female , Vagina/microbiology , Pregnancy , Adult , Premature Birth/microbiology , Premature Birth/ethnology , Case-Control Studies , Prospective Studies , Lactobacillus/isolation & purification , Host Microbial Interactions , Immunoglobulins , Immunoglobulin A , Young Adult
13.
Heliyon ; 10(10): e30685, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803950

ABSTRACT

We describe vaginal microbiota, including Gardnerella species and sexually transmitted infections (STIs), during pregnancy and their associations with recurrent spontaneous preterm birth (sPTB). We performed a prospective cohort study in a tertiary referral centre in the Netherlands, among pregnant women with previous sPTB <34 weeks' gestation. Participants collected three vaginal swabs in the first and second trimester. Vaginal microbiota was profiled with 16S rDNA sequencing. Gardnerella species and STI's were tested with qPCR. Standard care was provided according to local protocol, including screening and treatment for bacterial vaginosis (BV), routine progesterone administration and screening for cervical length shortening. Of 154 participants, 26 (16.9 %) experienced recurrent sPTB <37 weeks' gestation. Microbiota composition was not associated with sPTB. During pregnancy, the share of Lactobacillus iners-dominated microbiota increased at the expense of diverse microbiota between the first and second trimester. This change coincided with treatment for BV, demonstrating a similar change in microbiota composition after treatment. In this cohort of high-risk women, we did not find an association between vaginal microbiota composition and recurrent sPTB. This should be interpreted with care, as these women were offered additional preventive therapies to reduce sPTB according to national guidelines including progesterone and BV treatment. The increase observed in L. iners dominated microbiota and the decrease in diverse microbiota mid-gestation was most likely mediated by BV treatment. Our findings suggest that in recurrent sPTB occurring despite several preventive therapies, the microbe-related etiologic contribution might be limited.

14.
Front Nutr ; 11: 1389417, 2024.
Article in English | MEDLINE | ID: mdl-38746938

ABSTRACT

Objective: This study aims to evaluate the origin of the neonatal gut microbiota on the 14th day and probiotic intervention in the third trimester. Methods: Samples were obtained from a total of 30 pregnant individuals and their offspring, divided into a control group with no intervention and a probiotic group with live combined Bifidobacterium and Lactobacillus tablets, analyzing by 16S rRNA amplicon sequencing of the V4 region to evaluate the composition of them. Non-metric multidimensional scaling and SourceTracker were used to evaluate the origin of neonatal gut microbiota. Results: We found that the microbiota in the neonatal gut at different times correlated with that in the maternal microbiota. The placenta had more influence on meconium microbiota. Maternal gut had more influence on neonatal gut microbiota on the 3rd day and 14th day. We also found that the maternal gut, vaginal, and placenta microbiota at full term in the probiotic group did not have a significantly different abundance of Bifidobacterium, Lactobacillus, or Streptococcus. However, some other bacteria changed in the maternal gut and their neonatal gut in the probiotic group.

15.
Sci Rep ; 14(1): 11798, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38782975

ABSTRACT

Using pooled vaginal microbiota data from pregnancy cohorts (N = 683 participants) in the Environmental influences on Child Health Outcomes (ECHO) Program, we analyzed 16S rRNA gene amplicon sequences to identify clinical and demographic host factors that associate with vaginal microbiota structure in pregnancy both within and across diverse cohorts. Using PERMANOVA models, we assessed factors associated with vaginal community structure in pregnancy, examined whether host factors were conserved across populations, and tested the independent and combined effects of host factors on vaginal community state types (CSTs) using multinomial logistic regression models. Demographic and social factors explained a larger amount of variation in the vaginal microbiome in pregnancy than clinical factors. After adjustment, lower education, rather than self-identified race, remained a robust predictor of L. iners dominant (CST III) and diverse (CST IV) (OR = 8.44, 95% CI = 4.06-17.6 and OR = 4.18, 95% CI = 1.88-9.26, respectively). In random forest models, we identified specific taxonomic features of host factors, particularly urogenital pathogens associated with pregnancy complications (Aerococcus christensenii and Gardnerella spp.) among other facultative anaerobes and key markers of community instability (L. iners). Sociodemographic factors were robustly associated with vaginal microbiota structure in pregnancy and should be considered as sources of variation in human microbiome studies.


Subject(s)
Microbiota , RNA, Ribosomal, 16S , Vagina , Humans , Female , Pregnancy , Vagina/microbiology , Microbiota/genetics , Adult , RNA, Ribosomal, 16S/genetics , Cohort Studies , Young Adult
16.
Front Cell Infect Microbiol ; 14: 1280636, 2024.
Article in English | MEDLINE | ID: mdl-38585656

ABSTRACT

Vaginal microbiota transplantation (VMT) is a cutting-edge treatment modality that has the potential to revolutionize the management of vaginal disorders. The human vagina is a complex and dynamic ecosystem home to a diverse community of microorganisms. These microorganisms play a crucial role in maintaining the health and well-being of the female reproductive system. However, when the balance of this ecosystem is disrupted, it can lead to the development of various vaginal disorders. Conventional treatments, such as antibiotics and antifungal medications, can temporarily relieve the symptoms of vaginal disorders. However, they often fail to address the underlying cause of the problem, which is the disruption of the vaginal microbiota. In recent years, VMT has emerged as a promising therapeutic approach that aims to restore the balance of the vaginal ecosystem. Several studies have demonstrated the safety and efficacy of VMT in treating bacterial vaginosis, recurrent yeast infections, and other vaginal conditions. The procedure has also shown promising results in reducing the risk of sexually transmitted infections and preterm birth in pregnant women. However, more research is needed to establish optimal donor selection, preparation, and screening protocols, as well as long-term safety and efficacy. VMT offers a safe, effective, and minimally invasive treatment option for women with persistent vaginal problems. It could improve the quality of life for millions of women worldwide and become a standard treatment option shortly. With further research and development, it could potentially treat a wide range of other health problems beyond the scope of vaginal disorders.


Subject(s)
Microbiota , Premature Birth , Infant, Newborn , Female , Pregnancy , Humans , Quality of Life , Vagina/microbiology , Hand Strength
17.
Acta Obstet Gynecol Scand ; 103(7): 1271-1282, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38661227

ABSTRACT

INTRODUCTION: Alterations in microbiota composition have been implicated in a variety of human diseases. Patients with adenomyosis present immune dysregulation leading to a persistent chronic inflammatory response. In this context, the hypothesis that alterations in the microbiota may be involved in the pathogenesis of adenomyosis, by affecting the epigenetic, immunologic, and biochemical functions of the host, has recently been postulated. The aim of the present study was to compare the microbiota composition in the vagina, endometrium, and gut of individuals with and without adenomyosis. MATERIAL AND METHODS: Cross-sectional study including 38 adenomyosis patients and 46 controls, performed between September 2021 and October 2022 in a university hospital-based research center. The diagnosis of adenomyosis was based on sonographic criteria. Fecal, vaginal, and endometrial samples were collected. Study of the microbiota using 16S rRNA gene sequencing. RESULTS: Patients with adenomyosis exhibited a significant reduction in the gut microbial alpha diversity compared with healthy controls (Chao1 p = 0.012, Fisher p = 0.005, Observed species p = 0.005). Beta-diversity analysis showed significant differences in the compositions of both gut and vaginal microbiota between adenomyosis patients and the control group (Adonis p-value = 0.001; R2 = 0.03 and Adonis p-value = 0.034; R2 = 0.04 respectively). Specific bacterial taxa were found to be either overrepresented (Rhodospirillales, Ruminococcus gauvreauii group, Ruminococcaceae, and Actinomyces) or underrepresented in the gut and endometrial microbiota of adenomyosis patients compared with controls. Distinct microbiota profiles were identified among patients with internal and external adenomyosis phenotypes. CONCLUSIONS: The study revealed reduced gut microbiota diversity in adenomyosis patients, accompanied by distinct compositions in gut and vaginal microbiota compared with controls. Overrepresented or underrepresented bacterial taxa were noted in the gut and endometrial microbiota of adenomyosis patients, with variations in microbiota profiles among those with internal and external adenomyosis phenotypes. These findings suggest a potential association between microbiota and adenomyosis, indicating the need for further research to comprehensively understand the implications of these differences.


Subject(s)
Adenomyosis , Endometrium , Gastrointestinal Microbiome , Vagina , Humans , Female , Adenomyosis/microbiology , Cross-Sectional Studies , Adult , Vagina/microbiology , Endometrium/microbiology , Middle Aged , Case-Control Studies , RNA, Ribosomal, 16S/genetics
18.
BMC Microbiol ; 24(1): 112, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575862

ABSTRACT

BACKGROUND: Postpartum women often experience stress urinary incontinence (SUI) and vaginal microbial dysbiosis, which seriously affect women's physical and mental health. Understanding the relationship between SUI and vaginal microbiota composition may help to prevent vaginal diseases, but research on the potential association between these conditions is limited. RESULTS: This study employed 16S rRNA gene sequencing to explore the association between SUI and vaginal dysbiosis. In terms of the vaginal microbiota, both species richness and evenness were significantly higher in the SUI group. Additionally, the results of NMDS and species composition indicated that there were differences in the composition of the vaginal microbiota between the two groups. Specifically, compared to postpartum women without SUI (Non-SUI), the relative abundance of bacteria associated with bacterial dysbiosis, such as Streptococcus, Prevotella, Dialister, and Veillonella, showed an increase, while the relative abundance of Lactobacillus decreased in SUI patients. Furthermore, the vaginal microbial co-occurrence network of SUI patients displayed higher connectivity, complexity, and clustering. CONCLUSION: The study highlights the role of Lactobacillus in maintaining vaginal microbial homeostasis. It found a correlation between SUI and vaginal microbiota, indicating an increased risk of vaginal dysbiosis. The findings could enhance our understanding of the relationship between SUI and vaginal dysbiosis in postpartum women, providing valuable insights for preventing bacterial vaginal diseases and improving women's health.


Subject(s)
Microbiota , Urinary Incontinence, Stress , Vaginal Diseases , Female , Humans , Urinary Incontinence, Stress/etiology , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Vagina/microbiology , Microbiota/genetics , Lactobacillus/genetics , Bacteria/genetics , Vaginal Diseases/complications
19.
BMC Womens Health ; 24(1): 224, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582823

ABSTRACT

OBJECTIVE: Vaginal microbiota evaluation is a methodology widely used in China to diagnose various vaginal inflammatory diseases. Although vaginal microbiota evaluation has many advantages, it is time-consuming and requires highly skilled and experienced operators. Here, we investigated a six-index functional test that analyzed pH, hydrogen peroxide (H2O2), leukocyte esterase (LEU), sialidase (SNA), ß-glucuronidase (GUS), and acetylglucossidase (NAG), and determined its diagnostic value by comparing it with morphological tests of vaginal microbiota. MATERIALS AND METHODS: The research was conducted using data extracted from the Laboratory Information System of Women and Children's Hospital. A total of 4902 subjects, ranging in age from 35.4 ± 9.7 years, were analyzed. During the consultation, a minimum of two vaginal swab specimens per patient were collected for both functional and morphological testing. Fisher's exact was used to analyze data using SPSS. RESULTS: Of the 4,902 patients, 2,454 were considered to have normal Lactobacillus morphotypes and 3,334 were considered to have normal dominant microbiota. The sensitivity and specificity of H2O2-indicating Lactobacillus morphotypes were 91.3% and 25.28%, respectively, while those of pH-indicating Lactobacillus morphotypes were 88.09% and 59.52%, respectively. The sensitivity and specificity of H2O2-indicating dominant microbiota were 91.3% and 25.3%, respectively, while those of pH-indicating dominant microbiota were 86.27% and 64.45%, respectively. The sensitivity and specificity of NAG for vulvovaginal candidiasis were 40.64% and 84.8%, respectively. For aerobic vaginitis, GUS sensitivity was low at 0.52%, while its specificity was high at 99.93%; the LEU sensitivity and specificity values were 94.73% and 27.49%, respectively. Finally, SNA sensitivity and specificity for bacterial vaginosis were 80.72% and 96.78%, respectively. CONCLUSION: Functional tests (pH, SNA, H2O2, LEU) showed satisfactory sensitivity for the detection of vaginal inflammatory diseases. However, these tests lacked specificity, making it difficult to accurately identify specific pathologies. By contrast, NAG and GUS showed excellent specificity in identifying vaginal inflammatory diseases, but their sensitivity was limited. Therefore, functional tests alone are not sufficient to diagnose various vaginal inflammatory diseases. When functional and morphological tests are inconsistent, morphological tests are currently considered the preferred reference method.


Subject(s)
Candidiasis, Vulvovaginal , Vaginosis, Bacterial , Child , Humans , Female , Adult , Middle Aged , Hydrogen Peroxide , Vaginosis, Bacterial/diagnosis , Candidiasis, Vulvovaginal/diagnosis , Candidiasis, Vulvovaginal/microbiology , Vagina/microbiology , Sensitivity and Specificity
20.
Front Cell Infect Microbiol ; 14: 1364097, 2024.
Article in English | MEDLINE | ID: mdl-38606298

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease in women, intricately linked to hormonal imbalances. The microbiota composition plays a pivotal role in influencing hormonal levels within the body. In this study, we utilized a murine model to investigate how intestinal and vaginal microbiota interact with hormones in the development of PCOS. Methods: Twenty female mice were randomly assigned to the normal group (N) and the model group (P), where the latter received daily subcutaneous injections of 0.1 mL DHEA (6 mg/100 g). Throughout the experiment, we evaluated the PCOS mouse model by estrus cycle, serum total testosterone (T), prolactin (PRL) and luteinizing hormone (LH) levels, and ovarian pathological morphology. The microbial composition in both intestinal content and vaginal microbiota were studied by 16S rRNA gene high-throughput sequencing. Results: Compared with the N group, the P group showed significant increases in body weight, T, and PRL, with significant decrease in LH. Ovaries exhibited polycystic changes, and the estrous cycle was disrupted. The intestinal microbiota result shows that Chao1, ACE, Shannon and Simpson indexes were decreased, Desulfobacterota and Acidobacteriota were increased, and Muribaculaceae, Limosilactobacillus and Lactobacillus were decreased in the P group. T was significantly positively correlated with Enterorhabdus, and LH was significantly positively correlated with Lactobacillus. The analysis of vaginal microbiota revealed no significant changes in Chao1, ACE, Shannon, and Simpson indices. However, there were increased in Firmicutes, Bacteroidota, Actinobacteriota, Streptococcus, and Muribaculaceae. Particularly, Rodentibacter displayed a robust negative correlation with other components of the vaginal microbiota. Conclusion: Therefore, the response of the intestinal microbiota to PCOS is more significant than that of the vaginal microbiota. The intestinal microbiota is likely involved in the development of PCOS through its participation in hormonal regulation.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Polycystic Ovary Syndrome , Humans , Female , Mice , Animals , Luteinizing Hormone , RNA, Ribosomal, 16S/genetics , Testosterone
SELECTION OF CITATIONS
SEARCH DETAIL
...