Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Mol Cancer ; 23(1): 94, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720298

ABSTRACT

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Subject(s)
Carrier Proteins , Fatty Acids , Membrane Proteins , Neoplasm Proteins , Ovarian Neoplasms , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Tumor Microenvironment , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Animals , Thyroid Hormones/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Warburg Effect, Oncologic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays , Cell Proliferation , Proteoglycans
2.
Cell Mol Life Sci ; 81(1): 188, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635031

ABSTRACT

Melanoma has the highest propensity among solid tumors to metastasize to the brain. Melanoma brain metastases (MBM) are a leading cause of death in melanoma and affect 40-60% of patients with late-stage disease. Therefore, uncovering the molecular mechanisms behind MBM is necessary to enhance therapeutic interventions. Vascular mimicry (VM) is a form of neovascularization linked to invasion, increased risk of metastasis, and poor prognosis in many tumor types, but its significance in MBM remains poorly understood. We found that VM density is elevated in MBM compared to paired extracranial specimens and is associated with tumor volume and CNS edema. In addition, our studies indicate a relevant role of YAP and TAZ, two transcriptional co-factors scarcely studied in melanoma, in tumor cell-vasculogenesis and in brain metastasis. We recently demonstrated activation of the Hippo tumor suppressor pathway and increased degradation of its downstream targets YAP and TAZ in a metastasis impaired cell line model. In the current study we establish the utility of anti-YAP/TAZ therapy in mouse models of metastatic melanoma whereby treatment effectively inhibits VM and prolongs survival of mice with MBM. The data presented herein suggest that VM may be an important and targetable mechanism in melanoma and that VM inhibition might be useful for treating MBM, an area of high unmet clinical need, thus having important implications for future treatment regimens for these patients.


Subject(s)
Brain Neoplasms , Melanoma , Humans , Animals , Mice , Neovascularization, Pathologic , Brain , Cell Line , Transcription Factors
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612777

ABSTRACT

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Subject(s)
Glioblastoma , Glioma , Parkinson Disease , Humans , Glioblastoma/genetics , Membrane Proteins/genetics , Endothelial Cells , Angiogenesis , Glioma/genetics , Neuroglia , Neovascularization, Pathologic/genetics
4.
Angiogenesis ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546923

ABSTRACT

Vascular mimicry has been thoroughly investigated in tumor angiogenesis. In this study, we demonstrate for the first time that a process closely resembling tumor vascular mimicry is present during physiological blood vessel formation in tissue regeneration using the zebrafish fin regeneration assay. At the fin-regenerating front, vasculature is formed by mosaic blood vessels with endothelial-like cells possessing the morphological phenotype of a macrophage and co-expressing both endothelial and macrophage markers within single cells. Our data demonstrate that the vascular segments of the regenerating tissue expand, in part, through the transformation of adjacent macrophages into endothelial-like cells, forming functional, perfused channels and contributing to the de novo formation of microvasculature. Inhibiting the formation of tubular vascular-like structures by CVM-1118 prevents vascular mimicry and network formation resulting in a 70% shorter regeneration area with 60% reduced vessel growth and a complete absence of any signs of regeneration in half of the fin area. Additionally, this is associated with a significant reduction in macrophages. Furthermore, depleting macrophages using macrophage inhibitor PLX-3397, results in impaired tissue regeneration and blood vessel formation, namely a reduction in the regeneration area and vessel network by 75% in comparison to controls.

5.
Adv Sci (Weinh) ; 11(6): e2307271, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072640

ABSTRACT

Chemotherapy is widely used to treat colorectal cancer (CRC). Despite its substantial benefits, the development of drug resistance and adverse effects remain challenging. This study aimed to elucidate a novel role of glucagon in anti-cancer therapy. In a series of in vitro experiments, glucagon inhibited cell migration and tube formation in both endothelial and tumor cells. In vivo studies demonstrated decreased tumor blood vessels and fewer pseudo-vessels in mice treated with glucagon. The combination of glucagon and chemotherapy exhibited enhanced tumor inhibition. Mechanistic studies demonstrated that glucagon increased the permeability of blood vessels, leading to a pronounced disruption of vessel morphology. Signaling pathway analysis identified a VEGF/VEGFR-dependent mechanism whereby glucagon attenuated angiogenesis through its receptor. Clinical data analysis revealed a positive correlation between elevated glucagon expression and chemotherapy response. This is the first study to reveal a role for glucagon in inhibiting angiogenesis and vascular mimicry. Additionally, the delivery of glucagon-encapsulated PEGylated liposomes to tumor-bearing mice amplified the inhibition of angiogenesis and vascular mimicry, consequently reinforcing chemotherapy efficacy. Collectively, the findings demonstrate the role of glucagon in inhibiting tumor vessel network and suggest the potential utility of glucagon as a promising predictive marker for patients with CRC receiving chemotherapy.


Subject(s)
Colorectal Neoplasms , Glucagon , Humans , Animals , Mice , Glucagon/pharmacology , Glucagon/therapeutic use , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Colorectal Neoplasms/pathology , Signal Transduction , Cell Line, Tumor
6.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762073

ABSTRACT

Vasculogenic mimicry (VM), a process in which aggressive cancer cells form tube-like structures, plays a crucial role in providing nutrients and escape routes. Highly plastic tumor cells, such as those with the triple-negative breast cancer (TNBC) phenotype, can develop VM. However, little is known about the interplay between the cellular components of the tumor microenvironment and TNBC cells' VM capacity. In this study, we analyzed the ability of endothelial and stromal cells to induce VM when interacting with TNBC cells and analyzed the involvement of the FGFR/PI3K/Akt pathway in this process. VM was corroborated using fluorescently labeled TNBC cells. Only endothelial cells triggered VM formation, suggesting a predominant role of paracrine/juxtacrine factors from an endothelial origin in VM development. Via immunocytochemistry, qPCR, and secretome analyses, we determined an increased expression of proangiogenic factors as well as stemness markers in VM-forming cancer cells. Similarly, endothelial cells primed by TNBC cells showed an upregulation of proangiogenic molecules, including FGF, VEGFA, and several inflammatory cytokines. Endothelium-dependent TNBC-VM formation was prevented by AZD4547 or LY294002, strongly suggesting the involvement of the FGFR/PI3K/Akt axis in this process. Given that VM is associated with poor clinical prognosis, targeting FGFR/PI3K/Akt pharmacologically may hold promise for treating and preventing VM in TNBC tumors.

7.
Cancers (Basel) ; 15(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37568616

ABSTRACT

Preoperative angiography in glioblastoma (GBM) often shows arteriovenous shunts and early venous filling (EVF). Here, we investigated the clinical implications of EVF in GBM as a prognostic and vascular mimicry biomarker. In this retrospective multicenter study, we consecutively enrolled patients who underwent angiography with a GBM diagnosis between 1 April 2013 and 31 March 2021. The primary and secondary endpoints were the differences in overall survival (OS) and progression-free survival (PFS), respectively, between cases with and without EVF. Of the 133 initially enrolled patients, 91 newly diagnosed with GBM underwent preoperative angiography and became the study population. The 6-year OS and PFS were significantly worse in the EVF than in the non-EVF group. Moreover, 20 GBM cases (10 with EVF and 10 without EVF) were randomly selected and evaluated for histological vascular mimicry. Except for two cases that were difficult to evaluate, the EVF group had a significantly higher frequency of vascular mimicry than the non-EVF group (0/8 vs. 5/10, p = 0.04). EVF on preoperative angiography is a robust prognostic biomarker for GBM and may help detect cases with a high frequency of histological vascular mimicry.

8.
J Cancer Res Clin Oncol ; 149(13): 11571-11584, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37400573

ABSTRACT

BACKGROUND: Vascular mimicry (VM) epitomizes an innovative tumor angiogenesis pathway, potentially serving as an alternate conduit under the assumption of traditional tumor angiogenesis pathway inhibition. The role of VM in pancreatic cancer (PC), however, remains unexplored. METHODS: Using differential analysis and Spearman correlation, we identified key long non-coding RNAs (lncRNAs) signatures in PC from the collected set of VM-associated genes in the literature. We identified optimal clusters using the non-negative matrix decomposition (NMF) algorithm, and then compared clinicopathological features and prognostic differences between clusters. We also assessed tumor microenvironmental (TME) differences between clusters using multiple algorithms. Using univariate Cox regression analyses as well as lasso regression, we constructed and validated new lncRNA prognostic risk models for PC. We used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze model-enriched functions and pathways. Nomograms were then developed to predict patient survival in association with clinicopathological factors. In addition, single-cell RNA-sequencing (scRNA-seq) analysis was used to analyze the expression patterns of VM-related genes and lncRNAs in the PC of TME. Finally, we used the Connectivity Map (cMap) database to predict local anaesthetics that could modify the VM of PC. RESULTS: In this study, we developed a novel three-cluster molecular subtype using the identified VM-associated lncRNA signatures of PC. The different subtypes have significantly different clinical characteristics and prognostic value, and also show differential treatment response and TME. Following an in-depth analysis, we constructed and validated a novel prognostic risk model for PC based on the VM-associated lncRNA signatures. Enrichment analysis suggested that high riskscores were significantly associated with functions and pathways, including extracellular matrix remodeling, et al. In addition, we predicted eight local anaesthetics that could modulate VM in PC. Finally, we discovered differential expression of VM-related genes and lncRNAs across various cell types within pancreatic cancer. CONCLUSION: VM has a critical role in PC. This study pioneers the development of a VM-based molecular subtype that demonstrates substantial differentiation in PC populations. Furthermore, we highlighted the significance of VM within the immune microenvironment of PC. Moreover, VM might contribute to PC tumorigenesis through its mediation of mesenchymal remodeling and endothelial transdifferentiation-related pathways, which offers a new perspective on its role in PC.


Subject(s)
Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Prognosis , RNA, Long Noncoding/genetics , Anesthetics, Local , Pancreatic Neoplasms/genetics , Tumor Microenvironment/genetics , Pancreatic Neoplasms
9.
Cell Oncol (Dordr) ; 46(4): 885-908, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37245177

ABSTRACT

miRNAs and lncRNAs play a central role in cancer-associated gene regulations. The dysregulated expression of lncRNAs has been reported as a hallmark of cancer progression, acting as an independent prediction marker for an individual cancer patient. The interplay of miRNA and lncRNA decides the variation of tumorigenesis that could be mediated by acting as sponges for endogenous RNAs, regulating miRNA decay, mediating intra-chromosomal interactions, and modulating epigenetic components. This paper focuses on the influence of crosstalk between lncRNA and miRNA on cancer hallmarks such as epithelial-mesenchymal transition, hijacking cell death, metastasis, and invasion. Other cellular roles of crosstalks, such as neovascularization, vascular mimicry, and angiogenesis were also discussed. Additionally, we reviewed crosstalk mechanism with specific host immune responses and targeting interplay (between lncRNA and miRNA) in cancer diagnosis and management.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neovascularization, Pathologic/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
10.
Transl Oncol ; 32: 101666, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37031603

ABSTRACT

Tight junction protein 1 (TJP1) is a recently identified prominent regulator of bladder cancer (BLCA) angiogenesis and tumorigenesis. Vascular mimicry (VM) is a newly described tumor feature and is correlated with an increased risk of tumor metastasis. However, the relationship between TJP1 expression and VM in bladder cancer remains elusive. In the present study, we report a novel function for TJP1 in accommodating VM to promote tumor progression. We found that the elevated TJP1 expression was positively related to VM in patients and xenograft tumor models in bladder cancer. Enforced expression of TJP1 increased VM of BLCA cells in vitro and in vivo by elevating Vascular endothelial growth factor A (VEGFA) levels. Furthermore, VM induced by TJP1 overexpression was significantly blocked by the VEGFA and VEGFR inhibitors (Bevacizumab and Sunitinib). Mechanistically, TJP1 promoted VEGFA transcriptional and protein level in a TWIST1-dependent manner. Taken together, our study reveals that TJP1-regulated VEGFA overexpression may indicate a potential therapeutic target for clinical intervention in the early tumor neovascularization of bladder cancer.

11.
Eur J Radiol ; 163: 110797, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37018901

ABSTRACT

Angiogenesis in healthy tissue and within malignant tumors differs on many levels, which may partly be explained by vascular mimicry formation resulting in altered contrast material or different radiopharmaceuticals distributions. Failed remodulation results in changes in the molecular exchange through the capillary wall and those consequences affect the behavior of contrast agents and radiopharmaceuticals. One of the most indicative signs of malignant tissue is the increased permeability and the faster molecular exchange that occurs between the extracellular and intravascular spaces. Dynamic imaging can help to assess the changed microenvironment. The fast-distribution of molecules reflects newly developed conditions in blood-flow redistribution inside a tumor and within the affected organ during the early stages of tumor formation. Tumor development, as well as aggressiveness, can be assessed based on the change to the vascular bed development, the level of molecular exchange within the tissue, and/or indicative distribution within the organ. The study of the vascular network organization and its impact on the distribution of molecules is important to our understanding of the image pattern in several imaging methods, which in turn influences our interpretation of the findings. A hybrid imaging approach (including PET/MRI) allows the quantification of vascularization and/or its pathophysiological impressions in structural and metabolic images. It might optimize the evaluation of the pretreatment imaging, as well as help assess the effect of therapy targeting neovascularization; antiVEGF drugs and embolization-based therapies, for example.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Neovascularization, Pathologic/diagnostic imaging , Neovascularization, Pathologic/pathology , Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Contrast Media , Perfusion , Tumor Microenvironment
12.
Curr Oncol Rep ; 25(7): 709-728, 2023 07.
Article in English | MEDLINE | ID: mdl-37052868

ABSTRACT

PURPOSE OF THE REVIEW: Angiogenesis plays a key role in bladder cancer (BC) pathogenesis. In the last two decades, an increasing number of publications depicting a multitude of novel angiogenic molecules and pathways have emerged. The growing complexity necessitates an evaluation of the breadth of current knowledge to highlight key findings and guide future research. RECENT FINDINGS: Angiogenesis is a dynamic biologic process that is inherently difficult to assess. Clinical assessment of angiogenesis in BCs is advancing with the integration of image analysis systems and dynamic contrast-enhanced and magnetic resonance imaging (DCE-MRI). Tumour-associated macrophages (TAMs) significantly influence the angiogenic process, and further research is needed to assess their potential as therapeutic targets. A rapidly growing list of non-coding RNAs affect angiogenesis in BCs, partly through modulation of vascular endothelial growth factor (VEGF) activity. Vascular mimicry (VM) has been repeatedly associated with increased tumour aggressiveness in BCs. Standardised assays are needed for appropriate identification and quantification of VM channels. This article demonstrates the dynamic and complex nature of the angiogenic process and asserts the need for further studies to deepen our understanding.


Subject(s)
Neovascularization, Pathologic , Urinary Bladder Neoplasms , Humans , Neovascularization, Pathologic/pathology , Vascular Endothelial Growth Factor A , Image Processing, Computer-Assisted
13.
Cancer Med ; 12(3): 3786-3796, 2023 02.
Article in English | MEDLINE | ID: mdl-35946175

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is labeled with high mortality and tolerance to chemotherapy. Sorafenib has been the first-line treatment option in HCC patients for past decades, while the therapeutic effect was limited in almost HCC patients. METHODS: In this study, we analyzed public omics data of HCC patients with different responses to Sorafenib treatment. To confirm the role of integrins A5 and B1 (ITGA5 and ITGB1) in Sorafenib resistance, we generated the Sorafenib-resistant (Sor-R) cell lines and cells overexpressing ITGA5 or ITGB1. Hypoxia level was measured using Hypoxy probe by flow cytometry, while vasculogenic mimicry was detected and quantified by CD31 and periodic acid schiff staining. RESULTS: Hypoxia was upregulated in non-responsive patients, accompanied with genes involved in encoding extracellular matrix components and angiogenesis such as ITGA5 and ITGB1. Sor-R hepatoma cell lines were constructed to measure expression and role of candidate genes. ITGA5 and ITGB1 were augmented in Sor-R cells. Upregulation of ITGA5 or ITGB1 reduced the sensitivity to Sorafenib in HepG2 and Huh7 cells, aggravated the hypoxic condition and resulted in formation of vascular mimicry. CONCLUSIONS: These findings suggested that hypoxia associated vascular mimicry account for non-response to Sorafenib treatment in HCC patients. ITGA5 and ITGB1 may serve as effective predictors of HCC patients' outcome after Sorafenib treatment, which also provides a new target for HCC patients resistant to Sorafenib.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Sorafenib/therapeutic use , Liver Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Hypoxia
14.
Exp Cell Res ; 421(2): 113403, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36336028

ABSTRACT

Vascular mimicry (VM) is defined as a vascular channel-like structure composed of tumor cells that correlates with the growth of cancer cells by providing blood circulation. However, whether VM can be formed in dormant cancer cells remains unclear. Our previous research revealed that polyploid giant cancer cells (PGCCs) are specific dormant cells related to the poor prognosis of head and neck cancer. Here, we demonstrated that EBV could promote VM formation by PGCCs in vivo and in vitro. Furthermore, we revealed that the activation of the ERK pathway partly mediated by LMP2A is responsible for stemness, and the acquisition of the stemness phenotype is crucial to the malignant biological behavior of PGCCs. The epithelial-to-mesenchymal transition (EMT) process plays a considerable role in PGCCs, and EMT progression is vital for EBV-positive PGCCs to form VM. This is the first study to reveal that EBV creates plasticity in PGCC-VM and provide a new strategy for targeted anti-tumor therapy.


Subject(s)
Herpesvirus 4, Human , Neoplasms , Humans , Herpesvirus 4, Human/genetics , Epithelial-Mesenchymal Transition/genetics , Giant Cells/metabolism , Cell Line, Tumor , Neovascularization, Pathologic/metabolism , Neoplasms/pathology
15.
J Biomed Sci ; 29(1): 98, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401329

ABSTRACT

BACKGROUND: Tumor vascular mimicry is an emerging issue that affects patient survival while having no treatment at the current moment. Despite several factors implicated in vascular mimicry, little is known about stromal factors that modulate tumor microenvironment and shape malignant transformation. CD248, a type-I transmembrane protein dominantly expressed in stromal cells, mediates the interaction between cells and extracellular matrix proteins. CD248 protein expression is associated with the metastatic melanoma phenotype and promotes tumor progression in the stromal cells. This study aimed to explore the cell-autonomous effects of CD248 in melanoma vascular mimicry to aid cancer therapy development. METHODS: Loss-of-function approaches in B16F10 melanoma cells were used to study the cell-autonomous effects of CD248 on cell adhesion, migration, proliferation, and vascular mimicry. A solid-phase binding assay was performed to identify the interaction between CD248 and fibronectin. Horizontal and vertical cell migration assays were performed to analyze cell migration activity, and cell-patterned network formation on Matrigel was used to evaluate vascular mimicry activity. Recombinant CD248 (rCD248) proteins were generated, and whether rCD248 interfered with melanoma CD248 functions was evaluated in vitro. An experimental lung metastasis mouse model was used to investigate the effect of rCD248 treatment in vivo. RESULTS: CD248 protein expression in melanoma cells was increased by a fibroblast-conditioned medium. Knockdown of CD248 expression significantly decreased cell adhesion to fibronectin, cell migration, and vascular mimicry in melanoma cells. The lectin domain of CD248 was directly involved in the interaction between CD248 and fibronectin. Furthermore, rCD248 proteins containing its lectin domain inhibited cell adhesion to fibronectin and slowed down cell migration and vascular mimicry. Treatment with rCD248 protein could reduce pulmonary tumor burden, accompanied by a reduction in vascular mimicry in mice with melanoma lung metastasis. CONCLUSION: CD248 expression in melanoma cells promotes malignant transformation by increasing the activity of cell adhesion, migration, and vascular mimicry, whereas rCD248 protein functions as a molecular decoy interfering with tumor-promoting effects of CD248 in melanoma cells.


Subject(s)
Lung Neoplasms , Melanoma , Mice , Animals , Fibronectins , Melanoma/genetics , Cell Adhesion , Lung Neoplasms/genetics , Lectins/pharmacology , Tumor Microenvironment , Antigens, Neoplasm/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, CD/pharmacology
16.
Biomed Environ Sci ; 35(10): 931-942, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36443270

ABSTRACT

Objective: Dexmedetomidine (DEX), the most specific α 2-adrenergic receptor agonist widely used for its sedative and analgesic properties, has been reported to upregulate HIF-1α expression to protect hypoxic and ischemic tissues. However, it is largely unclear whether DEX can also upregulate Hypoxia-inducible factor-1 alpha (HIF-1α) expression and its downstream vascular endothelial growth factor-A (VEGFA) in cancer tissues with oxygen-deficient tumor microenvironment. Methods: We used SMMC-7721 cells, MHCC97-H cells, and a mouse model of orthotopic hepatic carcinoma to explore the effect of DEX on angiogenesis and vasculogenic mimicry (VM) and its mechanism. Under normoxic (20% O 2) and hypoxic (1% O 2) conditions, DEX was used to intervene cells, and yohimbine was used to rescue them. Results: The results showed that DEX promoted angiogenesis and VM in human liver cancer cells within a certain dose range, and the addition of yohimbine inhibited this effect. DEX could activate HIF-1α/VEGFA pathway, which was further verified by silencing HIF-1α. Consistently, in vivo results also showed that DEX can up-regulate HIF-1α/VEGFA expression, and enhance the number of VM channels and microvessel density (MVD). Conclusion: We believe that HIF-1α/VEGFA might be an important signaling pathway by which DEX promotes angiogenesis and VM formation in human hepatocellular carcinoma, whereas α 2-adrenergic receptor mediation might be the critical mechanisms.


Subject(s)
Carcinoma, Hepatocellular , Dexmedetomidine , Liver Neoplasms , Animals , Humans , Mice , Adrenergic alpha-2 Receptor Agonists/pharmacology , Cardiovascular Physiological Phenomena , Dexmedetomidine/pharmacology , Hypoxia , Liver Neoplasms/drug therapy , Oxygen , Tumor Microenvironment , Vascular Endothelial Growth Factor A/genetics , Receptors, Adrenergic, alpha-2/metabolism
17.
Int J Mol Sci ; 23(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36233261

ABSTRACT

α-catulin, together with vinculin and the α-catenins, belongs to the vinculin family of proteins, best known for their actin-filament binding properties and crucial roles in cell-cell and cell-substrate adhesion. In the past few years, an array of binding partners for α-catulin have surfaced, which has shed new light on the possible functions of this protein. Despite all this information, the molecular basis of how α-catulin acts in cells and controls a wide variety of signals during morphogenesis, tissue homeostasis, and cancer progression remains elusive. This review aims to highlight recent discoveries on how α-catulin is involved in a broad range of diverse biological processes with an emphasis on cancer progression.


Subject(s)
Catenins , Neoplasms , Actins , Family , Homeostasis , Humans , Vinculin , alpha Catenin/metabolism
18.
Cytokine ; 158: 155998, 2022 10.
Article in English | MEDLINE | ID: mdl-35981492

ABSTRACT

Extent of metastasis influences activation of platelets in tumor-microenvironment. Activated platelets potentiate mesenchymal-stem-cells (MSCs) to migrate in secondary metastatic sites without participation in process of invasion. Presence of higher percentage of MSCs along with activated-platelets induces formation of vascular-mimicry (VM). The pathophysiology, VM, has already been reported in multiple types of cancer including lung, ovary, melanoma etc. and related to poor-prognosis. Interaction of MSCs with platelets in cell-to-cell contact dependent manner is essential for their migration, thereby, VM. Evidences are obtained suggesting that under influence of tumor-associated-activated-platelets, expressions of vimentin, ve-cadherin are increased, along with decrease in e-cadherin on CD105+ MSCs in both mRNA and protein levels that may help in formation of vessel like structure in VM. Adoptive transfer of MSCs along with tumor-activated-platelets causes greater B16 melanoma metastasis at lungs in comparison to MSCs with non-activated platelets. Presence of CD105+Vimentin+ MSCs in vessel like structure in the metastatic lung confirms the involvement of platelet-activated-MSCs in VM, thereby, in metastasis.


Subject(s)
Mesenchymal Stem Cells , Neovascularization, Pathologic , Cadherins/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Mesenchymal Stem Cells/metabolism , Neovascularization, Pathologic/metabolism , Vimentin
19.
Cancers (Basel) ; 14(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36010912

ABSTRACT

Tumour molecular annotation is mandatory for biomarker discovery and personalised approaches, particularly in triple-negative breast cancer (TNBC) lacking effective treatment options. In this study, the interleukin-3 receptor α (IL-3Rα) was investigated as a prognostic biomarker and therapeutic target in TNBC. IL-3Rα expression and patients' clinical and pathological features were retrospectively analysed in 421 TNBC patients. IL-3Rα was expressed in 69% human TNBC samples, and its expression was associated with nodal metastases (p = 0.026) and poor overall survival (hazard ratio = 1.50; 95% CI = 1.01-2.2; p = 0.04). The bioinformatics analysis on the Breast Invasive Carcinoma dataset of The Cancer Genome Atlas (TCGA) proved that IL-3Rα was highly expressed in TNBC compared with luminal breast cancers (p = 0.017, padj = 0.026). Functional studies demonstrated that IL-3Rα activation induced epithelial-to-endothelial and epithelial-to-mesenchymal transition, promoted large blood lacunae and lung metastasis formation, and increased programmed-cell death ligand-1 (PD-L1) in primary tumours and metastases. Based on the TCGA data, IL-3Rα, PD-L1, and EMT coding genes were proposed to discriminate against TNBC aggressiveness (AUC = 0.86 95% CI = 0.82-0.89). Overall, this study identified IL-3Rα as an additional novel biomarker of TNBC aggressiveness and provided the rationale to further investigate its relevance as a therapeutic target.

20.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35887002

ABSTRACT

In highly aggressive tumors, cancer cells may form channel-like structures through a process known as vasculogenic mimicry (VM). VM is generally associated with metastasis, mesenchymal phenotype, and treatment resistance. VM can be driven by antiangiogenic treatments and/or tumor microenvironment-derived factors, including those from the endothelium. Curcumin, a turmeric product, inhibits VM in some tumors, while calcitriol, the most active vitamin D metabolite, exerts potent antineoplastic effects. However, the effect of these natural products on VM in breast cancer remains unknown. Herein, we studied the effect of both compounds on triple-negative breast cancer (TNBC) VM-capacity in a co-culture model. The process of endothelial cell-induced VM in two human TNBC cell lines was robustly inhibited by calcitriol and partially by curcumin. Calcitriol promoted TNBC cells' morphological change from spindle-like to cobblestone-shape, while curcumin diminished VM 3D-structure. Notably, the treatments dephosphorylated several active kinases, especially those involved in the PI3K/Akt pathway. In summary, calcitriol and curcumin disrupted endothelium-induced VM in TNBC cells partially by PI3K/Akt inactivation and mesenchymal phenotype inhibition. Our results support the possible use of these natural compounds as adjuvants for VM inactivation in patients with malignant tumors inherently capable of forming VM, or those with antiangiogenic therapy, warranting further in vivo studies.


Subject(s)
Calcitriol , Curcumin , Endothelium, Vascular , Triple Negative Breast Neoplasms , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcitriol/pharmacology , Calcitriol/therapeutic use , Cell Line, Tumor , Curcumin/pharmacology , Curcumin/therapeutic use , Endothelium/drug effects , Endothelium/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...