Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.890
Filter
1.
Article in English | MEDLINE | ID: mdl-38972507

ABSTRACT

Insect stings can cause large local reactions (LLRs) that are IgE-mediated and associated with considerable morbidity. A risk for systemic reactions including anaphylaxis to subsequent stings has been reported and is often noted by patients and health care providers. Guidelines do not recommend venom immunotherapy (VIT) for LLR based on the relatively low risk of anaphylaxis, but this is debated in this review. On the Pro side: the risk of anaphylaxis may be higher than reported in the limited literature, especially in patients who had only 1 LLR; new species with more potent stings are spreading into new areas; the quality of life can be markedly impaired by LLR; VIT is generally safe and highly effective. On the Con side: LLR are benign; stings occur infrequently; VIT has significant cost; systemic reactions occur more often to VIT than to stings in patients with LLR; FDA approval and published guidelines do not recommend VIT for LLR. In practice, shared decision-making is appropriate to incorporate knowledge of the natural history and known high-risk factors in the context of the patient's personal values and preferences.

2.
Article in English | MEDLINE | ID: mdl-38973302

ABSTRACT

Toxocariasis is a zoonotic parasitic infection with worldwide distribution and high impact on human health. It has a limited clinical resolution with the available drugs, making it challenging to treat. Quercetin, which possesses biological and pharmacological qualities including antiparasitic, antioxidant, and anticancer activities, is a possible substitute for the current medications. Marine invertebrates can produce a vast array of different molecules, many of which are biologically active substances with distinct characteristics. In this study, we assessed the in vitro nematocidal effect of both quercetin and venom of Cassiopea andromeda (jellyfish) against third larvae of Toxocara canis. In microplates with Roswell Park Memorial Institute-1640 medium, larvae were incubated with ethanolic extract of quercetin (0.01, 0.02, 0.05, 0.08, 0.1, 0.25, and 0.5 mM/mL) and water extract of C. andromeda venom (15, 20, 25, 30, 35, 40, and 60 µg/mL) to evaluate their larvicidal effect. A scanning electron microscopy has investigated the possible effect of lethal concentration (LC90) of both extracts on the body wall of cultivated larvae, in comparison with those cultivated in albendazole. Our study revealed the effects of both quercetin and C. andromeda venom exposure on the mortality rate and the ultrastructure of T. canis third larva in comparison with control and albendazole-treated groups.

3.
ACS Chem Neurosci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957957

ABSTRACT

Over a century has passed since Alois Alzheimer first described Alzheimer's disease (AD), and since then, researchers have made significant strides in understanding its pathology. One key feature of AD is the presence of amyloid-ß (Aß) peptides, which form amyloid plaques, and therefore, it is a primary target for treatment studies. Naturally occurring peptides have garnered attention for their potential pharmacological benefits, particularly in the central nervous system. In this study, nine peptide derivatives of Crotamine, a polypeptide from Crotalus durissus terrificus Rattlesnake venom, as well as one d-enantiomer, were evaluated for their ability to modulate Aß42 aggregation through various assays such as ThT, QIAD, SPR, and sFIDA. All tested peptides were able to decrease Aß42 aggregation and eliminate Aß42 aggregates. Additionally, all of the peptides showed an affinity for Aß42. This study is the first to describe the potential of crotamine derivative peptides against Aß42 aggregation and to identify a promising d-peptide that could be used as an effective pharmacological tool against AD in the future.

4.
Arch Toxicol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951190

ABSTRACT

Snake venoms are complex mixtures majorly composed of proteins with well-studied biological effects. However, the exploration of non-protein components, especially lipids, remains limited despite their potential for discovering bioactive molecules. This study compares three liquid-liquid lipid extraction methods for both chemical and biological analyses of Bothrops moojeni snake venom. The methods evaluated include the Bligh and Dyer method (methanol, chloroform, water), considered standard; the Acunha method, a modification of the Bligh and Dyer protocol; and the Matyash method (MTBE/methanol/water), featuring an organic phase less dense than the aqueous phase. Lipidomic analysis using liquid chromatography with high-resolution mass spectrometry (LC-HRMS) system revealed comparable values of lipid constituents' peak intensity across different extraction methods. Our results show that all methods effectively extracted a similar quantity of lipid species, yielding approximately 17-18 subclasses per method. However, the Matyash and Acunha methods exhibited notably higher proportions of biologically active lipids compared to the Bligh and Dyer method, particularly in extracting lipid species crucial for cellular structure and function, such as sphingomyelins and phosphatidylinositol-phosphate. In conclusion, when selecting a lipid extraction method, it is essential to consider the study's objectives. For a biological approach, it is crucial to evaluate not only the total quantity of extracted lipids but also their quality and biological activity. The Matyash and Acunha methods show promise in this regard, potentially offering a superior option for extracting biologically active lipids compared to the Bligh and Dyer method.

5.
Adv Protein Chem Struct Biol ; 141: 539-562, 2024.
Article in English | MEDLINE | ID: mdl-38960485

ABSTRACT

Several species during evolution suffered random mutations in response to various environmental factors, which resulted in the formation of venom in phylogenetically distant species. The composition of the venom of most species is poorly known. Snake venom is well characterized while most species have poorly known composition. In contrast, snake venoms are well characterized which proteins and peptides are the main active and most abundant constituents. 42 protein families have been identified, including metalloproteins known as metalloproteinases. These macromolecules are enzymes with zinc in their active site derived from the disintegrin A and metalloproteinase (ADAM) cellular family and are categorized into three classes (PI, PII and PIII) according to their domain organization. The snake venom metalloproteinases (SVMP) are cytotoxic, neurotoxic, myotoxic and/or hematotoxic with a crucial role in the defense and restraint of prey. In this scenario envenoming represents a danger to human health and has been considered a neglected disease worldwide, particularly in tropical and subtropical countries. Nevertheless, recently advances in "omics" technologies have demonstrated interesting biological activities of SVMPs such as antimicrobial, anticancer, against cardiovascular diseases and nervous system disorders. Metalloproteins have the therapeutic potential to be converted into drugs as other components of the venom have undergone this process (e.g., captopril, tirefiban and eptifibatide). So, this chapter is focused on the metalloproteins found in the secretions of venomous species, highlight some aspects such as structure, biological activity, pharmacological therapeutic potential and on.


Subject(s)
Metalloproteins , Snake Venoms , Animals , Humans , Snake Venoms/metabolism , Snake Venoms/chemistry , Snake Venoms/enzymology , Metalloproteins/metabolism , Metalloproteins/chemistry , Metalloproteins/antagonists & inhibitors
6.
Toxicon ; 247: 107841, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950738

ABSTRACT

Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.

7.
Adv Exp Med Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977639

ABSTRACT

Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.

8.
Appl Environ Microbiol ; : e0012124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980046

ABSTRACT

Naja atra, the Chinese cobra, is a major cause of snake envenomation in Asia, causing hundreds of thousands of clinical incidents annually. The current treatment, horse serum-derived antivenom, has unpredictable side effects and presents manufacturing challenges. This study focused on developing new-generation snake venom antidotes by using microbial phage display technology to derive nanobodies from an alpaca immunized with attenuated N. atra venom. Following confirmation of the immune response in the alpaca, we amplified VHH genes from isolated peripheral blood mononuclear cells and constructed a phage display VHH library of 1.0 × 107 transformants. After four rounds of biopanning, the enriched phages exhibited increased binding activity to N. atra venom. Four nanobody clones with high binding affinities were selected: aNAH1, aNAH6, aNAH7, and aNAH9. Specificity testing against venom from various snake species, including two Southeast Asian cobra species, revealed nanobodies specific to the genus Naja. An in vivo mouse venom neutralization assay demonstrated that all nanobodies prolonged mouse survival and aNAH6 protected 66.6% of the mice from the lethal dosage. These findings highlight the potential of phage display-derived nanobodies as valuable antidotes for N. atra venom, laying the groundwork for future applications in snakebite treatment.IMPORTANCEChinese cobra venom bites present a formidable medical challenge, and current serum treatments face unresolved issues. Our research applied microbial phage display technology to obtain a new, effective, and cost-efficient treatment approach. Despite interest among scientists in utilizing this technology to screen alpaca antibodies against toxins, the available literature is limited. This study makes a significant contribution by introducing neutralizing antibodies that are specifically tailored to Chinese cobra venom. We provide a comprehensive and unbiased account of the antibody construction process, accompanied by thorough testing of various nanobodies and an assessment of cross-reactivity with diverse snake venoms. These nanobodies represent a promising avenue for targeted antivenom development that bridges microbiology and biotechnology to address critical health needs.

9.
J Proteome Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980134

ABSTRACT

Snake venom variations are a crucial factor to understand the consequences of snakebite envenoming worldwide, and therefore it is important to know about toxin composition alterations between taxa. Palearctic vipers of the genera Vipera, Montivipera, Macrovipera, and Daboia have high medical impacts across the Old World. One hotspot for their occurrence and diversity is Türkiye, located on the border between continents, but many of their venoms remain still understudied. Here, we present the venom compositions of seven Turkish viper taxa. By complementary mass spectrometry-based bottom-up and top-down workflows, the venom profiles were investigated on proteomics and peptidomics level. This study includes the first venom descriptions of Vipera berus barani, Vipera darevskii, Montivipera bulgardaghica albizona, and Montivipera xanthina, as well as the first snake venomics profiles of Turkish Macrovipera lebetinus obtusa, and Daboia palaestinae, including an in-depth reanalysis of M. bulgardaghica bulgardaghica venom. Additionally, we identified the modular consensus sequence pEXW(PZ)1-2P(EI)/(KV)PPLE for bradykinin-potentiating peptides in viper venoms. For better insights into variations and potential impacts of medical significance, the venoms were compared against other Palearctic viper proteomes, including the first genus-wide Montivipera venom comparison. This will help the risk assessment of snakebite envenoming by these vipers and aid in predicting the venoms' pathophysiology and clinical treatments.

10.
Toxicon ; : 107838, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971473

ABSTRACT

Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 - 72.36 % and 21.97 - 24.82 % at 0.0625 -1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 minutes incubation at 37 °C. Similar effects were observed after 30 minutes incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 - 83.73 % and 54.87 - 59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.

11.
Int Immunopharmacol ; 138: 112578, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959539

ABSTRACT

Metabolic reprogramming is frequently accompanied by hepatocellular carcinoma (HCC) progression. Disrupted metabolites act as potential biomarkers and drug therapeutic targets for HCC. Peptide extract of scorpion venom (PESV) induces cytotoxic anti-proliferative effects and apoptosis in tumors. However, the action mechanisms of PESV remain unknown. This study aimed to explore the serum metabolic profiles of tumor-bearing mouse model. We generated an orthotopic HCC xenograft mouse model by implanting H22 cells into the left hepatic lobe of male C57BL/6 mice. After surgery, the mice were assigned to two groups randomly: PESV (PESV-treated 40 mg/kg daily, i.g.; n = 6) and control (treated with the solvent equally for 14 d, n = 6) groups. Based on an untargeted metabolomics approach using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, differential metabolites were screened via univariate and multivariate data analyses. A total of 48 differential metabolites in negative ion mode and 63 in positive ion mode were identified in the serum samples. Furthermore, metabolic pathway analysis revealed that aminoacyl-tRNA biosynthesis, amino acid pathway, glutathione metabolism, protein transports, protein digestion and absorption, and cAMP signaling pathways play vital roles in PESV-induced inhibition of tumors. These findings highlight the distinct changes in the metabolic profiles of HCC-bearing mice after PESV treatment, suggesting the potential of the identified metabolic molecules as therapeutic targets for HCC.

12.
Toxicon ; : 107845, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960288

ABSTRACT

Echis ocellatus is one of the commonest snakes responsible for envenomation in Nigeria. Antivenom is the only effective treatment, but the country suffers from a limited supply of effective antivenom. This study therefore aimed to explore the feasibility of effective, mono-specific antibodies production through immunization in rabbits using the venom of Echis ocellatus from Nigeria. The World Health Organization guide on antivenom production was employed in the immunization and the resultant antibodies were purified using protein A agarose column chromatography. Antibody titer reached a high plateau by 2-month immunization, and SDS PAGE of the sera suggests the presence of intact immunoglobulins accompanied with the heavy (50 kDa) and light (25 kDa) chains. The venom has an intravenous LD50 of 0.35 mg/kg in mice, and the venom lethality at a challenge dose of 2 LD50 was effectively neutralized by the antibodies with a potency value of 0.83 mg venom per g antibodies. The antibodies also neutralized the procoagulant activity of the venom with an effective dose (ED) of 13±0.66 ul, supporting its use for hemotoxic envenomation. The study establishes the feasibility of developing effective, mono-specific antibodies against the Nigerian Carpet viper.

13.
Toxicon ; 247: 107842, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960287

ABSTRACT

Poecilotheria spiders are considered theraphosids of underestimated clinical importance, with bites from these species inducing symptoms such as severe pain and intense muscle cramps. However, there is no specific treatment for the envenomation caused by these species, which, while native to India and Sri Lanka, are widely distributed worldwide. The present study reports the case of a 31-year-old man bitten by a Poecilotheria regalis specimen. The patient's clinical presentation was similar to Latrodectus envenomation, and patient was treated with an L. mactans antivenom. Most of patient's symptoms improved (fasciculations, pain, erythema, and local swelling), except muscle cramps. A toxicological study conducted on mice did not show that L. mactans antivenom has a neutralizing effect on the toxicity of P. regalis. The present report discusses the envenoming process of Poecilotheria species and the possible neutralizing effect exerted by L. mactans antivenom.

14.
Article in English | MEDLINE | ID: mdl-38851489

ABSTRACT

Shared decision-making (SDM) is an increasingly implemented patient-centered approach to navigating patient preferences regarding diagnostic and treatment options and supported decision-making. This therapeutic approach prioritizes the patient's perspectives, considering current medical evidence to provide a balanced approach to clinical scenarios. In light of numerous recent guideline recommendations that are conditional in nature and are clinical scenarios defined by preference-sensitive care options, there is a tremendous opportunity for SDM and validated decision aids. Despite the expansion of the literature on SDM, formal acceptance among clinicians remains inconsistent. Surprisingly, a significant disparity exists between clinicians' self-reported adherence to SDM principles and patients' perceptions of its implementation during clinical encounters. This discrepancy underscores a fundamental issue in the delivery of health care, where clinicians may overestimate their integration of SDM, while patients' experiences suggest otherwise. This review critically examines the factors contributing to this inconsistency, including barriers within the health care system, clinician attitudes and behaviors, and patient expectations and preferences. By elucidating these factors in the fields of food allergy, asthma, eosinophilic esophagitis, and other allergic diseases, this review aims to provide insights into bridging the gap between clinician perception and patient experience in SDM. Addressing this discordance is crucial for advancing patient-centered care and ensuring that SDM is not merely a theoretical concept but a tangible reality in the.

15.
Structure ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38889720

ABSTRACT

Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.

16.
Angiogenesis ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878257

ABSTRACT

Snake venoms are intricate mixtures of enzymes and bioactive factors that induce a range of detrimental effects in afflicted hosts. Certain Viperids, including Bothrops jararacussu, harbor C-type lectins (CTLs) known for their modulation of a variety of host cellular responses. In this study, we isolated and purified BjcuL, a CTL from B. jararacussu venom and investigated its impact on endothelial cell behavior, contrasting it with human galectin-1 (Gal-1), a prototype member of the galectin family with shared ß-galactoside-binding activity. We found that BjcuL binds to human dermal microvascular endothelial cells (HMECs) in a concentration- and carbohydrate-dependent fashion and reprograms the function of these cells, favoring a pro-inflammatory and pro-coagulant endothelial phenotype. In light of the quest for universal antagonists capable of mitigating the harmful consequences of snake venoms, BjcuL emerges as a promising target to be blocked in order to regulate pathological endothelial cell responses.

17.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879311

ABSTRACT

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Subject(s)
Peptides , Spider Venoms , Animals , Spider Venoms/chemistry , Spider Venoms/genetics , Peptides/pharmacology , Peptides/chemistry , Mites/drug effects , Spodoptera/drug effects , Tetranychidae/drug effects , Tetranychidae/genetics , Pest Control, Biological/methods , Amino Acid Sequence , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/chemistry , Predatory Behavior/drug effects
18.
Animals (Basel) ; 14(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891681

ABSTRACT

Crotalus snakebites induce various toxicological effects, encompassing neurological, myotoxic, and cytotoxic symptoms, with potentially fatal outcomes. Investigating venom toxicity is essential for public health, and developing new tools allows for these effects to be studied more comprehensively. The research goals include the elucidation of the physiological consequences of venom exposure and the assessment of toxicity using animal models. Chicken embryos serve as valuable models for assessing venom toxicity through the chick embryotoxicity screening test (CHEST) and the chick chorioallantoic membrane (CAM) assay, particularly useful for evaluating vascular impacts. C. adamanteus venom application resulted in higher embryotoxicity and morphological abnormalities, such as Siamese twins. The CAM assay demonstrated the hemorrhagic effects of venom, varying with venom type and concentration. The irritant potential of both venom types was classified as slight or moderate depending on their concentration. Additionally, acetylcholinesterase (AChE) activity was performed to receive information about organ toxicity. The results show that both venoms induced changes in the whole embryo, heart, and liver weights, but the C. adamanteus venom was identified as more toxic. Specific venom concentrations affected AChE activity in embryonic tissues. These findings underscore the embryotoxic and vasoactive properties of Crotalus venoms, providing valuable insights into their mechanisms of toxicity and potential applications in biomedicine.

19.
Toxicon ; 247: 107829, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925341

ABSTRACT

Naja atra bites often result in immediate and severe illness. The venom of N. atra contains a complex mixture of toxins that can cause significant damage to the patient's skin tissue. If left untreated, this condition can progress to localized necrosis, potentially resulting in impairment or even amputation in severe cases. Despite the known effects of the venom, the exact mechanisms underlying this tissue necrosis are not fully understood. This study aimed to investigate the protein components responsible for tissue necrosis induced by N. atra venom at both the organism-wide and molecular levels. To achieve this, venom was injected into Bama miniature pigs to cause ulcers, and exudate samples were collected at various time points after injection. Label-free proteomics analysis identified 1119, 1016, 938, 864, and 855 proteins in the exudate at 6, 12, 24, 36, and 48 h post-injection, respectively. Further analysis revealed 431 differentially expressed proteins, with S100A8, MMP-2, MIF, and IDH2 identified as proteins associated with local tissue necrosis. In this study, we established a Bama miniature pig model for N. atra venom injection and performed proteomic analysis of the wound exudate, which provides important insights into the molecular pathology of snakebite-induced tissue necrosis and potential theoretical bases for clinical treatment. Proteomic data from this study can be accessed through ProteomeXchange using the identifier PXD052498.

20.
Biochimie ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944106

ABSTRACT

The Loxosceles genus represents one of the main arachnid genera of medical importance in Brazil. Despite the gravity of Loxosceles-related accidents, just a handful of species are deemed medically important and only a few have undergone comprehensive venom characterization. Loxosceles amazonica is a notable example of a potentially dangerous yet understudied Loxosceles species. While there have been limited reports of accidents involving L. amazonica to date, accidents related to Loxosceles are increasing in the North and Northeast regions of Brazil, where L. amazonica has been reported. In this work, we provide a complementary biochemical and immunological characterization of L. amazonica venom, considering its most relevant enzymatic activities and its immunorecognition and neutralization by current therapeutic antivenoms. Additionally, a cDNA library enriched with phospholipase D (PLD) sequences from L. amazonica venom glands was built and subsequently sequenced. The results showed that L. amazonica venom is well immunorecognised by all the tested antibodies. Its venom also displayed proteolytic, hyaluronidase, and sphingomyelinase activities. These activities were at least partially inhibited by available antivenoms. With cDNA sequencing of PLDs, seven new putative isoforms were identified in the venom of L. amazonica. These results contribute to a better knowledge of the venom content and activities of a synanthropic, yet understudied, Loxosceles species. In vivo assays are essential to confirm the medical relevance of L. amazonica, as well as to assess its true toxic potential and elucidate its related pathophysiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...