ABSTRACT
Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.
Subject(s)
Transcriptome , Animals , Snake Venoms/genetics , Lectins, C-Type/genetics , Brazil , Metalloproteases/geneticsABSTRACT
Although non-front fanged snakes account for almost two-thirds of snake diversity, most studies on venom composition and evolution focus exclusively on front-fanged species, which comprise most of the clinically relevant accidents. Comprehensive reports on venom composition of non-front fanged snakes are still scarce for several groups. In this study, we address such shortage of knowledge by providing new insights about the venom composition among species of Phalotris, a poorly studied Neotropical dipsadid genus. Phalotris are known for their specialized venom delivery system and toxic venoms, which can cause life-threatening accidents in humans. We evaluate the venom-gland transcriptome of Phalotris, comparing the following three South American species: P. reticulatus for the Araucaria Pine forests, P. lemniscatus for the Pampa grasslands, and P. mertensi for the Brazilian Cerrado. Our results indicate similar venom profiles, in which they share a high expression level of Kunitz-type inhibitors (KUNZ). On the other hand, comparative analyses revealed substantial differences in the expression levels of C-type lectins (CTL) and snake venom metalloproteinases (SVMP). The diverse set of SVMP and CTL isoforms shows signals of positive selection, and we also identified truncated forms of type III SVMPs, which resemble type II and type I SVMPs of viperids. Additionally, we identified a CNP precursor hosting a proline-rich region containing a BPP motif resembling those commonly detected in viperid venoms with hypotensive activity. Altogether, our results suggest an evolutionary history favoring high expression levels of few KUNZ isoforms in Phalotris venoms, contrasting with a highly diverse set of SVMP and CTL isoforms. Such diversity can be comparable with the venom variability observed in some viperids. Our findings highlight the extreme phenotypic diversity of non-front fanged snakes and the importance to allocate greater effort to study neglected groups of Colubroidea.
ABSTRACT
Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.
Subject(s)
Anopheles , Antimalarials , Malaria , Plasmodium , Toxins, Biological , Female , Humans , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Venoms/pharmacology , Venoms/therapeutic use , Mosquito Vectors , Malaria/drug therapy , Toxins, Biological/therapeutic use , Plasmodium falciparumABSTRACT
Phospholipases A2 (PLA2s) are found in almost every venomous snake family. In snakebites, some PLA2s can quickly cause local myonecrosis, which may lead to permanent sequelae if antivenom is administered belatedly. They hydrolyse phospholipids in membranes through a catalytic calcium ions-dependent mechanism. BthTX-II is a basic PLA2 and the second major component in the venom of Bothrops jararacussu. Herein, using the software SEQUENCE SLIDER, which integrates crystallographic, mass spectrometry and genetic data, we characterized the primary, tertiary and quaternary structure of two BthTX-II variants (called a and b), which diverge in 7 residues. Crystallographic structure BthTX-IIa is in a Tense-state with its distorted calcium binding loop buried in the dimer interface, contrarily, the novel BthTX-IIb structure is a monomer in a Relax-state with a fatty acid in the hydrophobic channel. Structural data in solution reveals that both variants are monomeric in neutral physiological conditions and mostly dimeric in an acidic environment, being catalytic active in both situations. Therefore, we propose two myotoxic mechanisms for BthTX-II, a catalytic one associated with the monomeric assembly, whereas the other has a calcium independent activity related to its C-terminal region, adopting a dimeric conformation similar to PLA2-like proteins.
ABSTRACT
Snakes of the genus Lachesis, commonly known as bushmasters, are the largest venomous snakes in the Americas. Because these snakes have their habitats in areas of remote forests they are difficult to find, and consequently there are few studies of Lachesis taxa in their natural ecosystems. Bushmasters are distributed in tropical forest areas of South and Central America. In Brazil they can be found in the Amazon Rainforest and the Atlantic Forest. Despite the low incidence of cases, laquetic envenoming causes severe permanent sequelae due to the high amount of inoculated venom. These accidents are characterized by local pain, hemorrhage and myonecrosis that can be confused with bothropic envenomings. However, victims of Lachesis bites develop symptoms characteristic of Lachesis envenoming, known as vagal syndrome. An important message of this bibliographic synthesis exercise is that, despite having the proteomic profiles of all the taxa of the genus available, very few structure-function correlation studies have been carried out. Therefore the motivation for this review was to fill a gap in the literature on the genus Lachesis, about which there is no recent review. Here we discuss data scattered in a number of original articles published in specialized journals, spanning the evolutionary history and extant phylogeographic distribution of the bushmasters, their venom composition and diet, as well as the pathophysiology of their bites to humans and the biological activities and possible biotechnological applicability of their venom toxins.
ABSTRACT
Snake venom metalloproteinases are important toxins that play fundamental roles during envenomation. They share a structurally similar catalytic domain, but with diverse hemorrhagic capabilities. To understand the structural basis for this difference, we build and compare two dynamical models, one for the hemorrhagic atroxlysin-I from Bothrops atrox and the other for the non-hemorraghic leucurolysin-a from Bothrops leucurus. The analysis of the extended molecular dynamics simulations shows some changes in the local structure, flexibility and surface determinants that can contribute to explain the different hemorrhagic activity of the two enzymes. In agreement with previous results, the long Ω-loop (from residue 149 to 177) has a larger mobility in the hemorrhagic protein. In addition, we find some potentially-relevant differences at the base of the S1' pocket, what may be interesting for the structure-based design of new anti-venom agents. However, the sharpest differences in the computational models of atroxlysin-I and leucurolysin-a are observed in the surface electrostatic potential around the active site region, suggesting thus that the hemorrhagic versus non-hemorrhagic activity is probably determined by protein surface determinants.
Subject(s)
Bothrops , Crotalid Venoms/chemistry , Metalloendopeptidases/chemistry , Amino Acid Sequence , Animals , Bothrops/metabolism , Catalytic Domain , Molecular Dynamics Simulation , Static Electricity , Zinc/chemistryABSTRACT
Loxosceles spiders are responsible for serious human envenomations worldwide. The collection of symptoms found in victims after accidents is called loxoscelism and is characterized by two clinical conditions: cutaneous loxoscelism and systemic loxocelism. The only specific treatment is serum therapy, in which an antiserum produced with Loxosceles venom is administered to the victims after spider accidents. Our aim was to improve our knowledge, regarding the immunological relationship among toxins from the most epidemiologic important species in Brazil (Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta). Immunoassays using spider venoms and L. intermedia recombinant toxins were performed and their cross-reactivity assessed. The biological conservation of the main Loxosceles toxins (Phospholipases-D, Astacin-like metalloproteases, Hyaluronidase, ICK-insecticide peptide and TCTP-histamine releasing factor) were investigated. An in silico analysis of the putative epitopes was performed and is discussed on the basis of the experimental results. Our data is an immunological investigation in light of biological conservation throughout the Loxosceles genus. The results bring out new insights on brown spider venom toxins for study, diagnosis and treatment of loxoscelism and putative biotechnological applications concerning immune conserved features in the toxins.
Subject(s)
Antivenins/immunology , Spider Venoms/immunology , Spiders , Animals , Arthropod Proteins/chemistry , Computational Biology , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Spider Venoms/chemistry , Spider Venoms/enzymology , Tumor Protein, Translationally-Controlled 1ABSTRACT
Bothrops atrox is a highly dangerous pit viper in the Brazilian Amazon region.We produced a global catalogue of gene transcripts to identify the main toxin and other protein families present in the B. atrox venom gland. We prepared a directional cDNA library, from which a set of 610 high quality expressed sequence tags (ESTs) were generated by bioinformatics processing. Our data indicated a predominance of transcripts encoding mainly metalloproteinases(59% of the toxins). The expression pattern of the B. atrox venom was similar to Bothrops insularis, Bothrops jararaca and Bothrops jararacussu in terms of toxin type, although some differences were observed. B. atrox showed a higher amount of the PIII classof metalloproteinases which correlates well with the observed intense hemorrhagic action of its toxin. Also, the PLA2 content was the second highest in this sample compared to theother three Bothrops transcriptomes. To our knowledge, this work is the first transcriptome analysis of an Amazonian rain forest pit viper and it will contribute to the body of knowledge regarding the gene diversity of the venom gland of members of the Bothropsgenus. Moreover, our results can be used for future studies with other snake species from the Amazon region to investigate differences in gene patterns or phylogenetic relationships.