Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.763
Filter
1.
J Invest Dermatol ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218143

ABSTRACT

Increasing resistance of dermatophytes against antifungals creates global public health problems, rendering essential a better understanding of virulence mechanisms and factors determining host-specificity of dermatophytes. Since dermatophytes switch from a saprophytic to a parasitic lifestyle by reprogramming gene expression, reliable experimental models are needed to investigate the pathogenesis of dermatophytosis. Here, a relevant mouse model of Trichophyton benhamiae dermatophytosis was assessed, together with a model based on reconstructed human epidermis (RHE), allowing their respective validation regarding fungal gene expressed during infection. The use of a standardized inoculum induced a natural-like superficial infection in mice. The severity and persistence of lesions enabled the assessment of infection markers, including mouse-specific pro-inflammatory molecules and fungal genes previously reported as potential virulence factors. Upregulated expression of fungal genes, including those encoding subtilisins, in infected RHE revealed that dermatophytes deploy similar processes as those observed during in vivo infection. The RHE model was then used to compare infections by anthropophilic Trichophyton rubrum and zoophilic T. benhamiae. Therefore, these two models represent complementary analytical tools to study the pathogenesis of acute dermatophytoses. In addition, we have identified certain fungal markers of infection and highlighted the existence of different mechanisms deployed by zoophilic versus anthropophilic dermatophytes.

2.
Emerg Microbes Infect ; : 2400546, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221898

ABSTRACT

AbstractThe vast majority of data obtained from sequence analysis of influenza A viruses (IAVs) have revealed that nonstructural 1 (NS1) proteins from H1N1 swine, H3N8 equine, H3N2 avian and the correspondent subtypes from dogs have a conserved four C-terminal amino acid motif when independent cross-species transmission occurs between these species. To test the influence of the C-terminal amino acid motifs of NS1 protein on the replication and virulence of IAVs, we systematically generated 7 recombinants, which carried naturally truncated NS1 proteins, and their last four C-terminal residues were replaced with PEQK and SEQK (for H1N1), EPEV and KPEI (for H3N8) and ESEV and ESEI (for H3N2) IAVs. Another recombinant was generated by removing the C-terminal residues by reverse genetics. Remarkably, the ESEI and KPEI motifs circulating in canines largely contributed efficient replication in cultured cells and these had enhanced virulence. In contrast, the avian ESEV motif was only responsible for high pathogenicity in mice. We examined the effects of these motifs upon interferon (IFN) induction. The 7 mutant viruses replicated in vitro in an IFN-independent manner, and the canine SEQK motif was able to induced higher levels of IFN-ß in human cell lines. These findings shed further new light on the role of the four C-terminal residues in replication and virulence of IAVs and suggest that these motifs can modulate viral replication in a species-specific manner.

3.
Enzymes ; 55: 313-342, 2024.
Article in English | MEDLINE | ID: mdl-39222996

ABSTRACT

Carbonic anhydrases (CAs) catalyze the reversable hydration of carbon dioxide to bicarbonate placing them into the core of the biochemical carbon cycle. Due to the fundamental importance of their function, they evolved independently into eight classes, three of which have been recently discovered. Most research on CAs has focused on their representatives in eukaryotic organisms, while prokaryotic CAs received significantly less attention. Nevertheless, prokaryotic CAs play a key role in the fundamental ability of the biosphere to acquire CO2 for photosynthesis and to decompose the organic matter back to CO2. They also contribute to a broad spectrum of processes in pathogenic bacteria, enhancing their ability to survive in a host and, therefore, present a promising target for developing antimicrobials. This review focuses on the distribution of CAs among bacterial pathogens and their importance in bacterial virulence and host-pathogen interactions.


Subject(s)
Bacteria , Carbonic Anhydrases , Carbonic Anhydrases/metabolism , Bacteria/enzymology , Bacteria/pathogenicity , Host-Pathogen Interactions , Humans , Carbon Dioxide/metabolism , Virulence
4.
Funct Integr Genomics ; 24(5): 154, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223360

ABSTRACT

Proteus mirabilis is a gram-negative pathogen that caused significant opportunistic infections. In this study we aimed to identify antimicrobial resistance (AMR) genes and virulence determinants in two pan-drug resistant isolate "Bacteria_11" and "Bacteria_27" using whole genome sequencing. Proteus mirabilis "Bacteria_11" and "Bacteria_27" were isolated from two different hospitalized patients in Egypt. Antimicrobial susceptibility determined using Vitek 2 system, then whole genome sequencing (WGS) using MinION nanopore sequencing was done. Antimicrobial resistant genes and virulence determinants were identified using ResFinder, CADR AMR database, Abricate tool and VF analyzer were used respectively. Multiple sequence alignment was performed using MAFFT and FastTree, respectively. All genes were present within bacterial chromosome and no plasmid was detected. "Bacteria_11" and "Bacteria_27" had sizes of approximately 4,128,657 bp and 4,120,646 bp respectively, with GC content of 39.15% and 39.09%. "Bacteria_11" and "Bacteria_27" harbored 43 and 42 antimicrobial resistance genes respectively with different resistance mechanisms, and up to 55 and 59 virulence genes respectively. Different resistance mechanisms were identified: antibiotic inactivation, antibiotic efflux, antibiotic target replacement, and antibiotic target change. We identified several genes associated with aminoglycoside resistance, sulfonamide resistance. trimethoprim resistance tetracycline resistance proteins. Also, those responsible for chloramphenicol resistance. For beta-lactam resistance, only blaVEB and blaCMY-2 genes were detected. Genome analysis revealed several virulence factors contribution in isolates pathogenicity and bacterial adaptation. As well as numerous typical secretion systems (TSSs) were present in the two isolates, including T6SS and T3SS. Whole genome sequencing of both isolates identify their genetic context of antimicrobial resistant genes and virulence determinants. This genomic analysis offers detailed representation of resistant mechanisms. Also, it clarifies P. mirabilis ability to acquire resistance and highlights the emergence of extensive drug resistant (XDR) and pan-drug resistant (PDR) strains. This may help in choosing the most appropriate antibiotic treatment and limiting broad spectrum antibiotic use.


Subject(s)
Drug Resistance, Multiple, Bacterial , Proteus mirabilis , Virulence Factors , Proteus mirabilis/genetics , Proteus mirabilis/pathogenicity , Proteus mirabilis/drug effects , Proteus mirabilis/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Virulence Factors/genetics , Genome, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , Virulence/genetics , Microbial Sensitivity Tests , Proteus Infections/microbiology , Proteus Infections/drug therapy
5.
Mol Plant Pathol ; 25(9): e70001, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223938

ABSTRACT

Xanthomonas albilineans (Xal) is a gram-negative bacterial pathogen responsible for developing sugarcane leaf scald disease, which engenders significant economic losses within the sugarcane industry. In the current study, homologous recombination exchange was carried out to induce mutations within the virB/D4-like type IV secretion system (T4SS) genes of Xal. The results revealed that the virB11-deletion mutant (ΔvirB11) exhibited a loss in swimming and twitching motility. Application of transmission electron microscopy analysis further demonstrated that the ΔvirB11 failed to develop flagella formation and type IV pilus morphology and exhibited reduced swarming behaviour and virulence. However, these alterations had no discernible impact on bacterial growth. Comparative transcriptome analysis between the wild-type Xal JG43 and the deletion-mutant ΔvirB11 revealed 123 differentially expressed genes (DEGs), of which 28 and 10 DEGs were notably associated with flagellar assembly and chemotaxis, respectively. In light of these findings, we postulate that virB11 plays an indispensable role in regulating the processes related to motility and chemotaxis in Xal.


Subject(s)
Bacterial Proteins , Fimbriae, Bacterial , Flagella , Xanthomonas , Xanthomonas/pathogenicity , Xanthomonas/genetics , Virulence/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/ultrastructure , Fimbriae, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Gene Expression Regulation, Bacterial , Morphogenesis , Plant Diseases/microbiology , Saccharum/microbiology
6.
Drug Target Insights ; 18: 54-69, 2024.
Article in English | MEDLINE | ID: mdl-39224464

ABSTRACT

Objective: Anti-pathogenic potential of a polyherbal formulation Enteropan® was investigated against a multidrug-resistant strain of the bacterium Pseudomonas aeruginosa. Methods: Growth, pigment production, antibiotic susceptibility, etc., were assessed through appropriate in vitro assays. Virulence of the test pathogen was assessed employing the nematode worm Caenorhabditis elegans as a model host. Molecular mechanisms underlining the anti-pathogenic activity of the test formulation were elucidated through whole transcriptome analysis of the extract-exposed bacterial culture. Results: Enteropan-pre-exposed P. aeruginosa displayed reduced (~70%↓) virulence towards the model host C. elegans. Enteropan affected various traits like biofilm formation, protein synthesis and secretion, quorum-modulated pigment production, antibiotic susceptibility, nitrogen metabolism, etc., in this pathogen. P. aeruginosa could not develop complete resistance to the virulence-attenuating activity of Enteropan even after repeated exposure to this polyherbal formulation. Whole transcriptome analysis showed 17% of P. aeruginosa genome to get differentially expressed under influence of Enteropan. Major mechanisms through which Enteropan exerted its anti-virulence activity were found to be generation of nitrosative stress, oxidative stress, envelop stress, quorum modulation, disturbance of protein homeostasis and metal homeostasis. Network analysis of the differently expressed genes resulted in identification of 10 proteins with high network centrality as potential targets from among the downregulated genes. Differential expression of genes coding for five (rpoA, tig, rpsB, rpsL, and rpsJ) of these targets was validated through real-time polymerase chain reaction too, and they can further be pursued as potential targets by various drug discovery programmes.

7.
Crit Rev Microbiol ; : 1-20, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225080

ABSTRACT

Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.

8.
J Integr Plant Biol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225562

ABSTRACT

Soybean rust (SBR), caused by an obligate biotrophic pathogen Phakopsora pachyrhizi, is a devastating disease of soybean worldwide. However, the mechanisms underlying plant invasion by P. pachyrhizi are poorly understood, which hinders the development of effective control strategies for SBR. Here we performed detailed histological characterization on the infection cycle of P. pachyrhizi in soybean and conducted a high-resolution transcriptional dissection of P. pachyrhizi during infection. This revealed P. pachyrhizi infection leads to significant changes in gene expression with 10 co-expressed gene modules, representing dramatic transcriptional shifts in metabolism and signal transduction during different stages throughout the infection cycle. Numerous genes encoding secreted protein are biphasic expressed, and are capable of inhibiting programmed cell death triggered by microbial effectors. Notably, three co-expressed P. pachyrhizi apoplastic effectors (PpAE1, PpAE2, and PpAE3) were found to suppress plant immune responses and were essential for P. pachyrhizi infection. Double-stranded RNA coupled with nanomaterials significantly inhibited SBR infection by targeting PpAE1, PpAE2, and PpAE3, and provided long-lasting protection to soybean against P. pachyrhizi. Together, this study revealed prominent changes in gene expression associated with SBR and identified P. pachyrhizi virulence effectors as promising targets of RNA interference-based soybean protection strategy against SBR.

9.
mBio ; : e0122724, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207097

ABSTRACT

DNA polymerase ε (Polε) is an essential replicative polymerase consisting of Pol2, Dpb2, Dpb3, and Dpb4 subunits and has not been explored in the pathogenic yeast Candida albicans. C. albicans is accountable for >40% of deaths due to systemic candidiasis per year worldwide. Genome plasticity is one of the adaptive mechanisms associated with virulence, and as it is associated with DNA polymerase function, this study explored the role of Polε in genome stability and pathogenesis of C. albicans. POL2 and DPB2 are haploinsufficient, but DPB3 and DPB4 are dispensable for cell survival in diploid C. albicans. However, unlike in Saccharomyces cerevisiae, loss of any or both of the nonessential subunits or defective interaction between the two resulted in slow growth and temperature-sensitive phenotypes. Knockout strains of C. albicans (dpb3ΔΔ and dpb4ΔΔ and dpb3ΔΔdpb4ΔΔ) also exhibited sensitivity to genotoxic agents and delayed cell cycle progression. Reduced processive DNA synthesis and increased rate of mutagenesis were observed in dpb3 and dpb4 null strains. Whole-genome sequencing further confirmed the accumulation of indels and SNPs majorly in the intergenic repeat regions of the chromosomes of dpb3ΔΔdpb4ΔΔ. Polε-defective strains were constitutively filamentous and non-pathogenic in mice models of systemic candidiasis. Altogether, this study showed that the function of the Dpb3-Dpb4 subcomplex is critical for fungal morphogenesis and virulence besides its role as a structural component of Polε in DNA replication and genome stability; thus, their interacting interface may be targeted to develop antifungal drugs. IMPORTANCE: This study explored the role of DNA polymerase epsilon, especially its non-essential structural subunits in Candida albicans biology. Apart from their role in DNA replication and genome stability, the Dpb3-Dpb4 subcomplex regulates morphological switching and virulence. Since the defective strain is locked in filamentous form and is avirulent, the complex may be targeted for anti-fungal drug development.

10.
Microbiol Res ; 288: 127883, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39208525

ABSTRACT

Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.

11.
Biomed Pharmacother ; 179: 117352, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39208670

ABSTRACT

The fungus Candida albicans causes various kinds of human infections, including oral thrush, vulvovaginitis and life-endangering bloodstream infections, the incidence of which are rising. Worsening this, the clinical antifungals are limited to a few, highlighting the necessity to develop novel antifungal therapies. In this study, the antifungal activities of isobavachalcone against C. albicans SC5314 and nine C. albicans clinical isolates were tested. The effects of isobavachalcone (IBC) on C. albicans virulence factors, such as hyphal formation, adhesion, biofilm formation and extracellular phospholipase production, as well as the underlying mechanism, were also evaluated. Antifungal susceptibility test revealed that IBC has significant anti-Candida activities, with both MIC and MFC being 4-5 µg/mL against all strains tested. Hyphal formation in RPMI-1640, Spider and GlcNAc medium, adhesion to abiotic polystyrene surfaces and surfaces of A549 cells, could be inhibited by IBC. Most important, IBC could inhibit the C. albicans biofilm formation and development. PI staining tests showed that IBC could increase the cell membrane permeability, suggesting the damages to the fungal cell membrane. IBC was further demonstrated to induce excessive ROS production in C. albicans planktonic cells and its mature biofilms, as revealed by DCFH fluorescence detection through flowcytometry and relative fluorescence intensity analysis (with a microplate reader). The roles of ROS in the antifungal activity of IBC were further confirmed through antioxidant rescue assays in MIC and biofilm formation tests. Compared to its antifungal activity, the cytotoxicity against mammalian cells was low, indicating its potential in developing antifungal therapies.

12.
Microb Pathog ; 195: 106906, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39208958

ABSTRACT

The Staphylococcus intermedius group (SIG) includes coagulase-positive staphylococci commonly found in animals. The taxonomic classification within the SIG has evolved with molecular techniques distinguishing five species. Despite their similarities, these species exhibit varied host affinities, with unclear implications for virulence and host interaction. This study aimed to investigate the presence of coagulase-positive staphylococci in pigeons and to detect genes encoding for selected virulence factors in isolated strains. Another goal was to determine the adhesion capabilities of randomly selected pigeon S. intermedius, S. delphini, and canine S. pseudintermedius strains to canine and pigeon corneocytes and their adhesion and invasion abilities to canine keratinocytes in vitro. In total, 121 coagulase-positive strains were isolated from domestic and feral pigeons. The most prevalent species were S. delphini B and S. intermedius in domestic and feral pigeons, respectively. We proved that pigeon strains carried genes encoding for exfoliative toxin SIET and leukotoxin Luk-I. Moreover, we found that S. intermedius showed higher adherence to pigeon than to canine corneocytes, aligning with its presumed natural host. No difference in adherence abilities of S. pseudintermedius to canine and pigeon corneocytes was observed. In this study, we also observed that S. pseudintermedius could successfully invade the canine keratinocytes, in contrary to S. delphini and S. intermedius. Moreover, only S. intermedius was not able to invade canine keratinocytes at all. These findings highlight the complex interplay between SIG bacteria, and their hosts, underscoring the need for further research to understand the mechanisms of host adaptation and pathogenicity within this group.

13.
Fish Shellfish Immunol ; : 109863, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39209005

ABSTRACT

Aeromonas salmonicida is a common pathogenic bacterial species found in both freshwater and marine fish, leading to significant economic losses in the aquaculture industry. YidC is an accessory to SecYEG and is essential for the SecYEG transporter to insert into the bacterial membrane. However, the roles of the yidC gene on the host immune response remain unclear. Here, we compared the pathogenicity of yidC gene-deleted (ΔyidC) strain and wild-type (SRW-OG1) strain of mesophilic A. salmonicida to Orange-spotted grouper (Epinephelus coioides), and explored the impacts of yidC gene on the immune response of E. coioides to mesophilic A. salmonicida infection by using Red/ET recombineering. In this study, the E. coioides in the Secondary infected group had a 53.9% higher survival rate than those in the Primary infected group. In addition, the adhesion ability of ΔyidC strain decreased by about 83.36% compared with that of the wild-type (SRW-OG1) strain. Further comparison of the biological phenotype of SRW-OG1 and ΔyidC revealed that this yidC gene could regulate the expression of genes related to iron metabolism and have no effect on bacterial growth under the limited iron concentration. In the low concentration of Fe3+ and Fe2+ environment, SRW-OG1 can obtain iron ions by regulating yidC. Based on the above results, yidC gene contributed to the pathogenicity of mesophilic A. salmonicida to E. coioides, deletion of yidC gene promoted the inflammation and immune response of E. coioides to mesophilic A. salmonicida infection.

14.
Front Cell Infect Microbiol ; 14: 1407219, 2024.
Article in English | MEDLINE | ID: mdl-39211794

ABSTRACT

Objective: This study aimed to comprehensively investigate hypervirulent carbapenem-resistant Klebsiella pneumoniae (CR-hvKP) in the Ningbo region. Importantly, we sought to elucidate its molecular characteristics and pathogenic mechanisms. This information will provide evidence-based insights for preventing and controlling nosocomial infections and facilitate improved clinical diagnosis and treatment in this region. Methods: 96 carbapenem-resistant Klebsiella pneumoniae strains were collected from the Ningbo region between January 2021 and December 2022. Whole genome sequencing and bioinformatic methods were employed to identify and characterize CR-hvKP strains at the molecular level. The minimum inhibitory concentrations (MICs) of common clinical antibiotics were determined using the VITEK-2 Compact automatic microbiological analyzer. Plasmid conjugation experiments evaluated the transferability of resistance plasmids. Finally, mouse virulence assays were conducted to explore the pathogenic mechanisms. Results: Among the 96 strains, a single CR-hvKP strain, designated CR-hvKP57, was identified, with an isolation frequency of 1.04%. Whole-genome sequencing revealed the strain to be ST23 serotype with a K1 capsule. This strain harbored three plasmids. Plasmid 1, a pLVPK-like virulence plasmid, carried multiple virulence genes, including rmpA, rmpA2, iroB, iucA, and terB. Plasmid 2 contained transposable element sequences such as IS15 and IS26. Plasmid 3, classified as a resistance plasmid, harbored the bla KPC-3 carbapenem resistance gene. Mouse virulence assays demonstrated a high mortality rate associated with CR-hvKP57 infection. Additionally, there was a significant increase in IL-1ß, IL-6, and TNF-α levels in response to CR-hvKP57 infection, indicating varying degrees of inflammatory response. Western blot experiments further suggested that the pathogenic mechanism involves activation of the NF-κB signaling pathway. Conclusion: This study confirms the emergence of hypervirulent CR-hvKP in the Ningbo region, which likely resulted from the acquisition of a pLVPK-like virulence plasmid and a bla KPC-3 resistance plasmid by the ST23-K1 type Klebsiella pneumoniae. Our findings highlight the urgent need for more judicious use of antibiotics to limit the emergence of resistance. Additionally, strengthening infection prevention and control measures is crucial to minimize the spread of virulence and resistance plasmids.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenem-Resistant Enterobacteriaceae , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , Whole Genome Sequencing , beta-Lactamases , Animals , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/drug effects , Klebsiella Infections/microbiology , Mice , beta-Lactamases/genetics , beta-Lactamases/metabolism , Plasmids/genetics , Virulence/genetics , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/pathogenicity , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , China , Virulence Factors/genetics , Female , Disease Models, Animal , Male
15.
Front Cell Infect Microbiol ; 14: 1412007, 2024.
Article in English | MEDLINE | ID: mdl-39211796

ABSTRACT

The collective involvement of virulence markers of Escherichia coli as an emerging pathogen associated with periodontitis remains unexplained. This study aimed to implement an in vitro model of infection using a human epithelial cell line to determine the virulome expression related to the antibiotic and disinfectant resistance genotype and pulse field gel electrophoresis (PFGE) type in E. coli strains isolated from patients with periodontal diseases. We studied 100 strains of E. coli isolated from patients with gingivitis (n = 12), moderate periodontitis (n = 59), and chronic periodontitis (n = 29). The identification of E. coli and antibiotic and disinfectant resistance genes was performed through PCR. To promote the expression of virulence genes in the strains, an in vitro infection model was used in the human epithelial cell line A549. RNA was extracted using the QIAcube robotic equipment and reverse transcription to cDNA was performed using the QuantiTect reverse transcription kit (Qiagen). The determination of virulence gene expression was performed through real-time PCR. Overall, the most frequently expressed adhesion genes among the isolated strains of gingivitis, moderate periodontitis, and chronic periodontitis were fimH (48%), iha (37%), and papA (18%); those for toxins were usp (33%); those for iron acquisition were feoB (84%), fyuA (62%), irp-2 (61%), and iroN (35%); those for protectins were traT (50%), KpsMT (35%), and ompT (28%); and those for pathogenicity islands were malX (45%). The most common antibiotic and disinfectant resistance genes among gingivitis, moderate periodontitis, and chronic periodontitis strains were sul-2 (43%), blaSHV (47%), blaTEM (45%), tet(A) (41%), dfrA1 (32%), marR-marO (57%), and qacEA1 (79%). The findings revealed the existence of a wide distribution of virulome expression profiles related to the antibiotic and disinfectant resistance genotype and PFGE type in periodontal strains of E. coli. These findings may contribute toward improving the prevention and treatment measures for periodontal diseases associated with E. coli.


Subject(s)
Anti-Bacterial Agents , Disinfectants , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Virulence Factors , Humans , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Disinfectants/pharmacology , Periodontitis/microbiology , Virulence/genetics , A549 Cells , Epithelial Cells/microbiology , Genotype , Adult , Female , Male , Middle Aged , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Electrophoresis, Gel, Pulsed-Field
16.
Funct Integr Genomics ; 24(5): 145, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196424

ABSTRACT

Cases of diphtheria, even in immunized individuals, are still reported in several parts of the world, including in Brazil. New outbreaks occur in Europe and other continents. In this context, studies on Corynebacterium diphtheriae infections are highly relevant, both for a better understanding of the pathogenesis of the disease and for controlling the circulation of clones and antimicrobial resistance genes. Here we present a case of cutaneous infection by multidrug-resistant Corynebacterium diphtheriae and provide its whole-genome sequencing. Genomic analysis revealed resistance genes, including tet(W), sul1, cmx, rpoB2, rbpA and mutation in rpoB. We performed phylogenetic analyzes and used the BRIG to compare the predicted resistance genes with those found in genomes from other significant isolates, including those associated with some outbreaks. Virulence factors such as spaD, srtBC, spaH, srtDE, surface-anchored pilus proteins (sapD), nonfimbrial adhesins (DIP0733, DIP1281, and DIP1621), embC and mptC (putatively involved in CdiLAM), sigA, dtxR and MdbA (putatively involved) in post-translational modification, were detected. We identified the CRISPR-Cas system in our isolate, which was classified as Type II-U based on the database and contains 15 spacers. This system functions as an adaptive immune mechanism. The strain was attributed to a new sequence type ST-928, and phylogenetic analysis confirmed that it was related to ST-634 of C. diphtheriae strains isolated in French Guiana and Brazil. In addition, since infections are not always reported, studies with the sequence data might be a way to complement and inform C. diphtheriae surveillance.


Subject(s)
CRISPR-Cas Systems , Corynebacterium diphtheriae , Rifampin , Virulence Factors , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/pathogenicity , Corynebacterium diphtheriae/drug effects , Humans , Virulence Factors/genetics , Rifampin/pharmacology , Mutation , Phylogeny , Diphtheria/microbiology , Genome, Bacterial , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics
17.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201307

ABSTRACT

Cronobacter condimenti are environmental commensals that have not been associated with any clinical infections. To date, they are the least understood and described Cronobacter species within the genus. The objective of this study was to use a draft genome sequence (DGS) of the Cronobacter condimenti strain s37 to screen for genes encoding for antibiotic resistance, virulence, response to environmental stress, and biofilm formation. The strain was isolated in Poland from commercial small radish sprouts. This is the second genome of this species available in the GenBank database. The comparative genome analysis (cgMLST) of C. condimenti s37 with other Cronobacter spp. including the pathogenic species C. sakazakii and the plant-associated closely related genera Franconibacter and Siccibacter was also performed. The assembled and annotated genome of the C. condimenti s37 genome was 4,590,991 bp in length, with a total gene number of 4384, and a GC content of 55.7%. The s 37 genome encoded for genes associated with resistance to stressful environmental conditions (metal resistance genes: zinc, copper, osmotic regulation, and desiccation stress), 17 antimicrobial resistance genes encoding resistance to various classes of antibiotics and 50 genes encoding for the virulence factors. The latter were mainly genes associated with adhesion, chemotaxis, hemolysis, and biofilm formation. Cg-MLST analysis (3991 genes) revealed a greater similarity of C. condimenti s37 to S. turicensis, F. pulveris, and C. dublinensis than to other species of the genus Cronobacter. Studies on the diversity, pathogenicity, and virulence of Cronobacter species isolated from different sources are still insufficient and should certainly be continued. Especially the analysis of rare strains such as s37 is very important because it provides new information on the evolution of these bacteria. Comparative cgMLST analysis of s37 with other Cronobacter species, as well as closely related genera Franconibacter and Siccibacter, complements the knowledge on their adaptability to specific environments such as desiccation.


Subject(s)
Cronobacter , Genome, Bacterial , Virulence Factors , Cronobacter/genetics , Cronobacter/pathogenicity , Cronobacter/isolation & purification , Cronobacter/classification , Virulence Factors/genetics , Virulence/genetics , Phylogeny , Genomics/methods , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development
18.
Pharmaceutics ; 16(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39204419

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD: A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS: P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION: This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.

19.
Viruses ; 16(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39205166

ABSTRACT

Semi-covariance has attracted significant attention in recent years and is increasingly employed to elucidate statistical phenomena exhibiting fluctuations, such as the similarity or difference in charge patterns of spike proteins among coronaviruses. In this study, by examining values above and below the average/mean based on the positive and negative charge patterns of amino acid residues in the spike proteins of SARS-CoV-2 and its current circulating variants, the proposed methods offer profound insights into the nonlinear evolving trends in those viral spike proteins. Our study indicates that the charge span value can predict the infectivity of the virus and the charge density can estimate the virulence of the virus, and both predicated infectivity and virulence appear to be associated with the capability of viral immune escape. This semi-covariance coefficient analysis may be used not only to predict the infectivity, virulence and capability of immune escape for coronaviruses but also to analyze the functionality of other viral proteins. This study improves our understanding of the trend of viral evolution in terms of viral infectivity, virulence or the capability of immune escape, which remains further validated by more future studies and statistical data.


Subject(s)
COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Virulence , Humans , COVID-19/virology , COVID-19/immunology
20.
Viruses ; 16(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39205188

ABSTRACT

The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied. SARS-CoVs, in which 3a-PBM and E-PMB have been deleted (3a-PBM-/E-PBM-), reduced their titer around one logarithmic unit but still were viable. In addition, the absence of the E-PBM and the replacement of 3a-PBM with that of E did not allow the rescue of SARS-CoV. E protein PBM was necessary for virulence, activating p38-MAPK through the interaction with Syntenin-1 PDZ domain. However, the presence or absence of the homologous motif in the 3a protein, which does not bind to Syntenin-1, did not affect virus pathogenicity. Mutagenesis analysis and in silico modeling were performed to study the extension of the PBM of the SARS-CoV E protein. Alanine and glycine scanning was performed revealing a pair of amino acids necessary for optimum virus replication. The binding of E protein with the PDZ2 domain of the Syntenin-1 homodimer induced conformational changes in both PDZ domains 1 and 2 of the dimer.


Subject(s)
Coronavirus Envelope Proteins , PDZ Domains , Protein Binding , SARS-CoV-2 , Humans , Virulence , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Coronavirus Envelope Proteins/metabolism , Coronavirus Envelope Proteins/genetics , Animals , Viroporin Proteins/metabolism , Viroporin Proteins/genetics , COVID-19/virology , Chlorocebus aethiops , Vero Cells , Amino Acid Motifs , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL