Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 740
Filter
1.
Poult Sci ; 103(11): 104202, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39222554

ABSTRACT

Heat stress (HS) brings great challenges to the poultry industry. Vitamin B6 (VB6) is an essential micro-nutrient for animals to maintain normal physiological functions and possesses antioxidant and anti-inflammatory properties. This study aimed to explore the effect of VB6 on alleviating HS-induced intestinal barrier impairment in broilers. A total of 250 broilers (609.76 ± 0.34 g) were randomly allocated to 5 groups with 5 replicate cages of 10 birds each. The broilers in thermoneutral (TN) group were raised in thermoneutral conditions (23 ± 1°C) and fed with a basal diet. The birds in other four groups were housed under cycle high temperature (34 ± 1°C for 8 h/d) from d 21 to 35 and fed with the basal diet (HS group) or basal diet supplemented with 6, 12, or 24 mg/kg VB6 (HB-6, HB-12, HB-24 groups). The results showed that HS reduced the growth performance, increased ileum inflammatory cytokines levels, and impaired the gut barrier function (P < 0.05). Compared to the HS group, final body weight, average daily gain, and average daily feed intake, and the feed conversion ratio were improved by VB6 supplementation. The diamine oxidase, interleukin (IL)-1ß, tumor necrosis factor-α, IL-18, IL-10, and interferon-γ levels were reduced by VB6 supplementation (P < 0.05). Moreover, VB6 supplementation linearly or quadratically enhanced villus height and villus height-to-crypt depth ratio of duodenum and jejunum, and decreased crypt depth of duodenum and ileum. The mRNA expression of Occlaudin, ZO1, Mucin2, Mucin4, E-cadhein, and ß-catenin were increased by VB6 treatment (P < 0.05). Furthermore, dietary VB6 altered the diversity and community of gut microbiota (P < 0.05). A total of 83 differential metabolites associated with the amelioration of VB6 were identified, which were primarily enriched in glycerophospholipid metabolism, caffeine metabolism, and glutathione metabolism pathway. Collectively, VB6 may improve the growth performance and intestinal barrier function of heat-stressed broilers by regulating the ileal microbiota and metabolic homeostasis.

2.
Nutrients ; 16(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125347

ABSTRACT

The goal of the present study was to determine whether an acute dose of a zinc-containing nutritional supplement (ZMA) has any effects on sleep and morning performance in recreationally trained males. Nineteen males participated in a repeated-measures within-subjects study to assess objective and subjective measures of sleep, completed counter-movement jumps (CMJ) and repeated sprint morning performance (RSP). Three days of baseline food intake showed no major deficiencies of zinc, magnesium or vitamin B6 for all participants (11.9 ± 3.4, 395 ± 103 and 2.7 ± 0.9 mg.day-1, respectively). Sleep (22:30-06:30 h) was assessed via actimetry, and either a control (no tablets, NoPill), dextrose placebo (PLAC) or ZMA was ingested 30-60 min before retiring to bed for two nights. The participants undertook the three conditions (NoPill, PLAC or ZMA) administered in a counterbalanced order. The data were analyzed using general linear models with repeated measures. In healthy active males who consume diets of adequate micronutrients, sleep normally and maintain good sleep hygiene (time to bed and wake times), ZMA supplementation had no beneficial effect on RSP or performance in the Stroop test (p > 0.05) but did improve CMJ height (p < 0.001) compared to that of PLAC but not NoPill (p > 0.05). Supplementation of ZMA for two nights had no effect on sleep, RSP or cognitive function. The NoPill condition elucidated the effects of the intervention under investigation.


Subject(s)
Dietary Supplements , Sleep , Humans , Male , Sleep/drug effects , Sleep/physiology , Young Adult , Adult , Stroop Test , Athletic Performance/physiology , Zinc/administration & dosage , Double-Blind Method
3.
Appl Environ Microbiol ; : e0127024, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133002

ABSTRACT

In various organisms, the coenzyme form of vitamin B6, pyridoxal phosphate (PLP), is synthesized from pyridoxine phosphate (PNP). Control of PNP levels is crucial for metabolic homeostasis because PNP has the potential to inhibit PLP-dependent enzymes and proteins. Although the only known pathway for PNP metabolism in Escherichia coli involves oxidation by PNP oxidase, we detected a strong PNP phosphatase activity in E. coli cell lysate. To identify the unknown PNP phosphatase(s), we performed a multicopy suppressor screening using the E. coli serA pdxH strain, which displays PNP-dependent conditional lethality. The results showed that overexpression of the yigL gene, encoding a putative sugar phosphatase, effectively alleviated the PNP toxicity. Biochemical analysis revealed that YigL has strong phosphatase activity against PNP. A yigL mutant exhibited decreased PNP phosphatase activity, elevated intracellular PNP concentrations, and increased PNP sensitivity, highlighting the important role of YigL in PNP homeostasis. YigL also shows reactivity with PLP. The phosphatase activity of PLP in E. coli cell lysate was significantly reduced by mutation of yigL and nearly abolished by additional mutation of ybhA, which encodes putative PLP phosphatase. These results underscore the important contribution of YigL, in combination with YbhA, as a primary enzyme in the dephosphorylation of both PNP and PLP in E. coli.IMPORTANCEPyridoxine phosphate (PNP) metabolism is critical for both vitamin B6 homeostasis and cellular metabolism. In Escherichia coli, oxidation of PNP was the only known mechanism for controlling PNP levels. This study uncovered a novel phosphatase-mediated mechanism for PNP homeostasis. Multicopy suppressor screening, kinetic analysis of the enzyme, and knockout/overexpression studies identified YigL as a key PNP phosphatase that contributes to PNP homeostasis when facing elevated PNP concentrations in E. coli. This study also revealed a significant contribution of YigL, in combination with YbhA, to PLP metabolism, shedding light on the mechanisms of vitamin B6 regulation in bacteria.

4.
Sci Rep ; 14(1): 17937, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095405

ABSTRACT

Advanced glycation end products (AGEs) are the final products of the Maillard reaction, formed through the interaction of carbohydrates and proteins. Reactive dicarbonyl compounds such as methylglyoxal (MGO) serve as precursors for AGEs formation. Elevated levels of MGO/AGEs are observed in conditions like obesity, polycystic ovarian syndrome (PCOS), and diabetes, negatively impacting oocyte development. Previous studies have shown that hydrogen sulfide, a gasotransmitter with anti-AGEs effects, is produced in a process influenced by vitamin B6. R-α-lipoic acid (ALA) inhibits protein glycation and AGEs formation while stimulating glutathione (GSH) production. Taurine mitigates oxidative stress and acts as an anti-glycation compound, preventing in vitro glycation and AGEs accumulation. This study aimed to explore the ameliorative effects of a micronutrient support (Taurine, ALA and B6: TAB) on mouse oocytes challenged with MGO. Our results indicate that MGO reduces oocyte developmental competence, while TAB supplementation improves maturation, fertilization, and blastocyst formation rates. TAB also restores cell lineage allocation, redox balance and mitigates mitochondrial dysfunction in MGO-challenged oocytes. Furthermore, cumulus cells express key enzymes in the transsulfuration pathway, and TAB enhances their mRNA expression. However, TAB does not rescue MGO-induced damage in denuded oocytes, emphasizing the supportive role of cumulus cells. Overall, these findings suggest that TAB interventions may have significant implications for addressing reproductive dysfunctions associated with elevated MGO/AGEs levels. This study highlights the potential of TAB supplementation in preserving the developmental competence of COCs exposed to MGO stress, providing insights into mitigating the impact of dicarbonyl stress on oocyte quality and reproductive outcomes.


Subject(s)
Oocytes , Pyruvaldehyde , Taurine , Thioctic Acid , Vitamin B 6 , Animals , Taurine/pharmacology , Pyruvaldehyde/pharmacology , Pyruvaldehyde/metabolism , Oocytes/drug effects , Oocytes/metabolism , Mice , Thioctic Acid/pharmacology , Female , Vitamin B 6/pharmacology , Vitamin B 6/metabolism , Glycation End Products, Advanced/metabolism , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects
5.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115011

ABSTRACT

Vitamin B6 (VB6) is a member of the water-soluble B vitamins which have a vital performance in nervous system operating activities. VB6 is highly demanded to maintain excellent skin and immune systems in the human body. furthermore, VB6 is tremendously substantial in the functions of some enzymes that participate in the metabolism of proteins, amino acids, etc. The deficiency of VB6 will eventuate in anemic situations and may lead to permanent injuries in the brain. moreover, recent studies disclosed that adequate Vitamin B6 in the human body can decrease the intensity of illnesses such as diabetes, stress, etc., in patients with COVID-19 infections. Thus, the detection of VB6 from real samples is crucial to control the amount of this vitamin in biological fluids and to monitor the pharmaceutical dosage quality. Various analytical approaches have been employed for the VB6 detection in biological and pharmaceutical samples. Although biosensing and sensing approaches hold several obvious advantages such as simplicity, capability for miniaturization, quick response time, etc. from other analytical methods. Hence, through the last decades, designing and fabricating biosensors with sufficient sensitivity and selectivity have been investigated by many researchers in order to detect VB6. The purpose of this review is to illustrate the importance of diverse electrochemical and optical approaches for VB6 detection. Additionally, novel VB6 detection techniques based on electrochemical, optical, and conventional methods have been considerably discussed, and compared with each other. Furthermore, a comprehensive summary of the current limitations and future challenges in VB6 analysis are explained and also create a pathway for subsequent expansions and applications.


Vitamin B6 is an essential compound for proper function of human body.Various nanomaterial-based methods such as conational approach, electrochemical biosensing and apta-sensing analyses for Vitamin B6 detection has been developed.Different techniques for detecting of Vitamin B6 have been comprehensively discussed.Various electrochemical sensors fabrication and its application in Vitamin B6 detection with nanomaterials have been assessed.The article points out the recent progress limitations, and also the upcoming tasks in the successful sensor fabrication with the functionalized nanomaterials.

6.
Photodiagnosis Photodyn Ther ; : 104314, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181489

ABSTRACT

BACKGROUND: Peripheral Facial Palsy (PFP) is a facial paralysis with various etiologies, including idiopathic causes (Bell's palsy), infections, trauma, and genetic factors. Traditional treatments involve antiviral medications, corticosteroids, and physiotherapy. However, new therapies, such as Low-Level Laser Therapy (LLLT), are emerging with promising results. METHODS: This case series reports on two patients with PFP treated with LLLT combined with Vitamin B1, B6, and B12 supplementation. The first case involved a 52-year-old female with PFP due to a viral infection. The second case was a 33-year-old male who developed PFP following a traumatic brain injury. Both patients received LLLT sessions every two weeks, targeting 10 points along the facial nerve pathway from the facial notch across the face. The laser device used was the Theraphy EC (DMC, Sao Carlos, SP, Brazil), with each point receiving 4 Joules of energy applied perpendicular to the skin after cleaning the face with water and soap to remove lipids that could interfere. The administration of Vitamin B was done using NEUROBIONTA tablets (Vitamin B1 + Vitamin B6 + Vitamin B12; Procter & Gamble, Santiago, Chile) with one tablet taken daily for 30 days. RESULTS: After six to seven sessions, both patients showed significant improvement in facial muscle function and overall facial symmetry. In the first case, improvements were noted in muscle tonicity and facial movements, with the patient reporting reduced facial disfigurement. In the second case, notable recovery in facial mobility and symmetry was observed, with the patient experiencing decreased paresthesia and restored muscle functionality. CONCLUSION: These findings suggest that LLLT, combined with Vitamin B1, B6, and B12 supplementation, may effectively improve facial muscle function and symmetry in PFP patients. The non-invasive nature and ease of application make LLLT a viable option for PFP treatment. Further studies with larger sample sizes and standardized protocols are necessary to confirm these results and establish LLLT as a standard treatment for PFP.

7.
Front Nutr ; 11: 1406147, 2024.
Article in English | MEDLINE | ID: mdl-39183990

ABSTRACT

Objective: This investigation aims to elucidate the correlations between dietary intakes of vitamin E, B6, and niacin and the incidence of cataracts, utilizing the comprehensive NHANES 2005-2008 dataset to affirm the prophylactic roles of these nutrients against cataract formation. Methods: Using data from the NHANES 2005-2008 cycles, this analysis concentrated on 7,247 subjects after exclusion based on incomplete dietary or cataract data. The identification of cataracts was determined through participants' self-reported ophthalmic surgical history. Nutritional intake was gauged using the automated multiple pass method, and the data were analyzed using logistic and quantile regression analyses to investigate the relationship between vitamin consumption and cataract prevalence. Results: Our analysis identified significant inverse associations between the intake of vitamins E, B6, and niacin and the risk of cataract development. Specifically, higher intakes of vitamin B6 (OR = 0.85, 95% CI = 0.76-0.96, p = 0.0073) and niacin (OR = 0.98, 95% CI = 0.97-1.00, p = 0.0067) in the top quartile were significantly associated with a reduced likelihood of cataract occurrence. Vitamin E intake showed a consistent reduction in cataract risk across different intake levels (OR = 0.96, 95% CI = 0.94-0.99, p = 0.0087), demonstrating a nonlinear inverse correlation. Conclusion: The outcomes indicate that elevated consumption of vitamin B6 and niacin, in conjunction with regular vitamin E intake, may have the potential to delay or prevent cataract genesis. These results suggest a novel nutritional strategy for cataract prevention and management, advocating that focused nutrient supplementation could be instrumental in preserving eye health and reducing the risk of cataracts. Further research is recommended to validate these findings and establish optimal dosages for maximum benefit.

8.
J Enzyme Inhib Med Chem ; 39(1): 2372734, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39149761

ABSTRACT

The current therapies against gastric pathogen Helicobacter pylori are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of H. pylori. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and in silico experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from H. pylori by the competition with GTP (IC50eq ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against H. pylori.


Subject(s)
Adenylosuccinate Synthase , Anti-Bacterial Agents , Dose-Response Relationship, Drug , Helicobacter pylori , Microbial Sensitivity Tests , Vitamin B 6 , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Vitamin B 6/pharmacology , Vitamin B 6/chemistry , Vitamin B 6/chemical synthesis , Structure-Activity Relationship , Adenylosuccinate Synthase/metabolism , Adenylosuccinate Synthase/chemistry , Adenylosuccinate Synthase/antagonists & inhibitors , Adenylosuccinate Synthase/pharmacology , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Drug Resistance, Bacterial/drug effects , Pyridoxal Phosphate/pharmacology , Pyridoxal Phosphate/chemistry , Models, Molecular
9.
Scand J Clin Lab Invest ; : 1-6, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146443

ABSTRACT

Vitamin B1 (thiamine pyrophosphate (TPP)) and B6 (pyridoxal 5'- phosphate (PLP)) deficiencies pose significant health risks. The current measurement method employs High-Performance Liquid Chromatography (HPLC), though, Liquid Chromatography with tandem Mass Spectrometry (LC-MS/MS) is considered a more sensitive and selective analytical method. However, there is a lack of LC-MS/MS-based reference intervals. Moreover, none of the existing reference intervals are established in Danish populations. Therefore, the aim of this study was to establish a reference interval for whole blood concentrations of TPP and PLP in Danish blood donors using LC-MS/MS. Blood samples were collected from healthy Danish blood donors and analysed using the reagent kit, MassChrom® Vitamins B1 and B6 in whole blood (Chromsystems Instruments & Chemicals GmbH, Munich, Germany) for quantitative determination of both TPP and PLP concentration in whole blood, using LC-MS/MS. Reference intervals were determined with non-parametric methods as the 2.5th and 97.5th percentile and presented with 90% confidence intervals (CI). In total 120 blood donors were included. The concentrations of TTP or PLP were not statistically different between sexes just as age did not affect the concentrations, hence, combined reference intervals were employed. The resulting reference intervals are: TPP, nmol/L: 101.0 (90% CI: 96.4-108.5) - 189.0 (90% CI: 184.7-192.0) and PLP, nmol/L: 64.0 (90% CI: 60.9-66.7) - 211.8 (90% CI: 168.3-231.0). In conclusion, reference intervals for whole blood TTP and PLP in a healthy Danish population were established based on a LC-MS/MS method. Furthermore, the reference intervals were not affected by age or sex.

10.
Heliyon ; 10(14): e34799, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39148988

ABSTRACT

Purpose: Infertility is a worldwide concern, and recent research indicates that vitamin B6 deficiency may play a role in male infertility, primarily by inducing hyperhomocysteinemia and oxidative stress. These processes can have a detrimental effect on semen quality, ultimately affecting male fertility. Here, we aim to evaluate the biochemical status of pyridoxine (vitamin B6) in relation to total glutathione and total antioxidant capacity. Materials and methods: A case control study samples were collected of asthenozoospermic (n = 63) and normospermic (n = 43) cases, with average men age 30.35 ± 7.03 years old. Semen plasma specimens representing both fertile and sub-fertile men visiting two different secondary care health institute in Irbid province, Jordan. All samples were assessed according to WHO guidelines (2021) and by using spectrophotometry to evaluate the semen plasma levels of vitamin B6, glutathione (GSH) and total antioxidant capacity (TAC). Results: Our main finding is there is significant positive correlations between the seminal plasma concentration of GSH (p < 0.0001) and TAC (p < 0.0073) are significantly correlated with vitamin B6 deficiency in asthenozoospermia group in comparison to normozoospermia cases. A significant decrease (p < 0.0001) the levels of vitamin B6 in men with asthenozoospermia compared to normozoospermic men (control) with an approximate 80 % percent reduction in the mean levels between groups. Conclusions: These findings suggest that pyridoxine deficiency may very well alter the GSH system, in so doing affecting the antioxidant defense mechanism against reactive oxygen species to sperm, impacting sperm development and maturation. leading to asthenozoospermia.

11.
Sci Rep ; 14(1): 19960, 2024 08 28.
Article in English | MEDLINE | ID: mdl-39198437

ABSTRACT

Conflicting evidence still exists regarding Vitamin B12's involvement in coronary heart disease (CHD). There is no precedent for previous studies to include both Vitamin B12, Vitamin B6, as well as Vitamin E in the consideration of CHD associating factors. Our data derived from the National Health and Nutrition Examination Survey (NHANES), which covers the period 2003-2020. 33,640 samples were included in this cross-sectional study. We used an unadjusted covariates and three adjusted covariates. The intake percentage of Vitamins E, B6, and B12 was categorized into continuous and categorical variables using multivariate logistic regression analysis and subgroup logistic regression. To estimate these trends, we applied the percentage categories of Vitamin E, B6, and B12 intake as continuous variables. We recorded Vitamin E, B6, B12, age, race, BMI, gender, household annual income, education level, hypertension status, diabetes status, smoking status, and drinking status for included samples. Multivariate regression analysis revealed that Vitamin E and B6 were negatively associated with CHD and exerted protective effects, while Vitamin B12 had little correlation with CHD. Based on the quartiles of Vitamin E and Vitamin B6 percentage, the strongest protective effect was observed in the third quartile (Q3). Analyses of subgroups showed the effects of Vitamin B6 and Vitamin E on CHD were more noticeable in women, the participant's BMI was in the 25-30 range, and participants who smoked. We identified the possible protective effect of Vitamin E and Vitamin B6 against CHD, especially in female, obese, and smoking populations, whereas income and education were also viewed as influencing factors that could be taken into account.


Subject(s)
Coronary Disease , Nutrition Surveys , Vitamin B 12 , Vitamin B 6 , Vitamin E , Humans , Female , Male , Vitamin B 12/blood , Coronary Disease/epidemiology , Middle Aged , Cross-Sectional Studies , Adult , Aged , Risk Factors
12.
J Nutr ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39147036

ABSTRACT

BACKGROUND: There is an urgent need to develop an efficient therapeutic strategy for heart failure with preserved ejection fraction (HFpEF), which is mediated by phenotypic changes in cardiac macrophages. We previously reported that vitamin B-6 inhibits macrophage-mediated inflammasome activation. OBJECTIVES: We sought to examine whether the prophylactic use of vitamin B-6 prevents HFpEF. METHODS: HFpEF model was elicited by a combination of high-fat diet and Nω-nitro-l-arginine methyl ester supplement in mice. Cardiac function was assessed using conventional echocardiography and Doppler imaging. Immunohistochemistry and immunoblotting were used to detect changes in the macrophage phenotype and myocardial remodeling-related molecules. RESULTS: Co-administration of vitamin B-6 with HFpEF mice mitigated HFpEF phenotypes, including diastolic dysfunction, cardiac macrophage phenotypic shifts, fibrosis, and hypertrophy. Echocardiographic improvements were observed, with the E/E' ratio decreasing from 42.0 to 21.6 and the E/A ratio improving from 2.13 to 1.17. The exercise capacity also increased from 295.3 to 657.7 min. However, these beneficial effects were negated in downstream of kinase (DOK) 3-deficient mice. Mechanistically, vitamin B-6 increased DOK3 protein concentrations and inhibited macrophage phenotypic changes, which were abrogated by an AMP-activated protein kinase inhibitor. CONCLUSIONS: Vitamin B-6 increases DOK3 signaling to lower risk of HFpEF by inhibiting phenotypic changes in cardiac macrophages.

13.
Vitam Horm ; 125: 401-438, 2024.
Article in English | MEDLINE | ID: mdl-38997171

ABSTRACT

Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.


Subject(s)
Diabetes Mellitus , Glycation End Products, Advanced , Vitamin B 6 , Glycation End Products, Advanced/metabolism , Humans , Vitamin B 6/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/drug therapy , Animals
14.
J Fluoresc ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042357

ABSTRACT

In this study, fluorescent gold nanoclusters (AuNCs) conjugated with pyridoxal-5-phosphate (PLP) were synthesized, characterized, and used for Zn2+ fluorescence turn-on sensing. PLP was conjugated over the surface of papain-stabilized fluorescent gold nanoclusters (pap-AuNCs; λex = 380 nm, λem = 670 nm) by forming imine linkage. Due to this modification, the red color emitting pap-AuNCs changed to orange color emitting nanoclusters PLP_pap-AuNCs. The nano-assembly PLP_pap-AuNCs detect Zn2+ selectively by showing a notable fluorescence enhancement at 477 nm. Zn2+ detection with PLP_pap-AuNCs was quick and easy, with an estimated detection limit of 0.14 µM. Further, paper strips and cotton buds coated with PLP_pap-AuNCs were developed for affordable on-site visual detection of Zn2+. Finally, the detection of Zn2+ in actual environmental water samples served as validation of the usefulness of PLP_pap-AuNCs.

15.
Article in English | MEDLINE | ID: mdl-39005225

ABSTRACT

OBJECTIVES: To compare long-term transplant outcomes (organ rejection and retransplant) of simultaneous liver/kidney transplant (SLK) versus isolated kidney transplant (IK) for patients with primary hyperoxaluria (PH). METHODS: The Rare Kidney Stone Consortium PH registry was queried to identify patients with PH who underwent SLK or IK from 1999 to 2021. Patient characteristics and long-term transplant outcomes were abstracted and analyzed. Statistical comparisons were performed with Kaplan-Meier plots and Cox proportional hazards models. RESULTS: We identified 250 patients with PH, of whom 35 received care at Mayo Clinic and underwent SLK or IK. Patients who underwent SLK as their index transplant had lower odds of kidney rejection than did those who underwent IK (hazard ratio [HR], 0.29; 95% confidence interval [CI], 0.08-0.99; p = .048). The immunoprotective effect of concomitant liver and kidney transplant appeared to enhance outcomes for patients with PH. Additionally, the odds of retransplant were significantly lower for patients who underwent SLK as their index transplant than for those who underwent IK (HR, 0.08; 95% CI, 0.02-0.42; p = .003). Of five patients who underwent IK and had maintained graft function for at least 5 years after transplant, three (60%) had documented vitamin B6 responsiveness. CONCLUSIONS: Patients with PH who underwent SLK had a lower risk of kidney rejection and retransplant than those who underwent IK. Accurate genetic assessment for vitamin B6 responsiveness may optimize IK allocation. Novel therapeutics, such as lumasiran, have been introduced as promising agents for the management of PH.

16.
Nutr Neurosci ; : 1-35, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968136

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that impairs communication, socialization, and behavior. The association of ASD with folic acid has been investigated due to the importance of this vitamin for neurological health. This study is an update of the publication 'Folic acid and autism: What do we know?' and aims to systematically review studies examining the relationship between folic acid and ASD. The search resulted in 2,389 studies on folic acid and ASD, which were selected by two reviewers based on their titles and abstracts. Studies meeting the inclusion criteria were fully read. The 52 included studies involved 10,429 individuals diagnosed with ASD and assessed the intake of vitamin B6, folic acid, and vitamin B12; serum levels of these vitamins, homocysteine, and methionine; therapeutic interventions using folic acid; and the association between maternal exposure to this vitamin and the risk of ASD. The evidence of insufficient folic acid intake in most individuals with ASD remains consistent in this update. No association was found between maternal exposure to folic acid and the risk of ASD in their children. Despite observed improvements in communication, socialization, and behavior in individuals with ASD following folic acid interventions, it is crucial to consider the individuality and complexity of ASD. Given the relevance of the topic, there remains a need for more high-quality research and clinical trials characterized by rigorous methodological designs.

17.
Food Chem ; 460(Pt 1): 140525, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39047472

ABSTRACT

The determination of vitamin B6 (VB6) in food is of great significance due to its vital role in maintaining health and its necessity for ingestion through dietary sources. Therefore, based on ionic liquid-based yellow-emitting carbon dots (Y-CDs), a novel fluorescence-smartphone dual-mode method was first developed. The present method was applied to the detection of VB6 in milk. In the fluorescence method, the formation of complexes between VB6 and Y-CDs results in a significant decrease of the fluorescence intensity of Y-CDs. VB6 in milk samples was successfully determined according to this method, which exhibited a low detection limit (5 × 10-5 mg/mL) and excellent recoveries (98.80%-103.80%), demonstrating its feasibility in real sample analysis. In addition, the smartphone-based analysis method was established by researching the correlation between different VB6 concentrations and the (R + B) values of Y-CDs. When this method was applied, the detection process of VB6 was simplified. By combining the two methods, the possibility of incorrect analysis results can be effectively reduced, and the reliability of detection results can be improved through cross-validation of the two methods. Compared with traditional chromatography and electrochemical methods, the dual-mode method was more rapid, convenient, accurate, and suitable for the detection of VB6.


Subject(s)
Carbon , Ionic Liquids , Milk , Quantum Dots , Smartphone , Vitamin B 6 , Milk/chemistry , Animals , Carbon/chemistry , Quantum Dots/chemistry , Ionic Liquids/chemistry , Vitamin B 6/analysis , Fluorescence , Limit of Detection , Spectrometry, Fluorescence/methods , Food Contamination/analysis , Cattle
18.
Front Nutr ; 11: 1363539, 2024.
Article in English | MEDLINE | ID: mdl-38903614

ABSTRACT

Objective: Although numerous studies have substantiated the neuroprotective effects of vitamin B6 on the optic nerve and its enhancement of visual function, comprehensive data delineating the correlation between vitamin B6 and glaucoma at a national demographic scale remain insufficient. This study is designed to explore the link between the dietary consumption of vitamin B6 and glaucoma. Methods: This study included 3,850 individuals aged 40 and older from the National Health and Nutrition Examination Survey (NHANES), spanning 2005-2008. Dietary consumption of vitamin B6 was calculated from the average of two 24-h dietary recall interviews. Glaucoma was diagnosed in accordance with the established Rotterdam criteria. To evaluate the relationship between vitamin B6 dietary consumption and the risk of glaucoma, we employed Restricted Cubic Splines and weighted multivariable logistic regression analysis. We employed stratified and three other sensitivity analyses to confirm the robustness of our results, and conducted a preliminary exploration of the potential association between vitamin B6 supplement consumption and glaucoma risk. Results: After adjusting for covariates, we found a significant inverse correlation between dietary consumption of vitamin B6 and glaucoma risk (p non-linearity = 0.18; p for trend = 0.02). Stratified analysis and three other sensitivity analyses revealed stability in the outcomes (all p for interaction>0.05). Compared to the lowest quartile of consumption (≤1.23 mg/day), individuals in the highest quartile of vitamin B6 consumption (>2.34 mg/day) experienced a 75% reduction in glaucoma risk (OR = 0.25, 95% CI 0.07-0.92). However, the effect of vitamin B6 supplements on glaucoma was inconclusive. Conclusion: A diet high in vitamin B6 inversely correlates with glaucoma risk, suggesting that increasing dietary intake of vitamin B6 could be a viable preventative strategy against glaucoma among adults in the United States.

19.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 252-261, 2024.
Article in English | MEDLINE | ID: mdl-38945891

ABSTRACT

Pyridoxamine (PM) is one of the natural vitamins B6 (VB6) and functions as an endogenous inhibitor for the formation of AGEs (advanced glycation end products). The AGEs are implicated in aging, diabetes, and various neuropsychiatric disease, including schizophrenia, Alzheimer's disease, and Parkinson's disease. However, it is unclear whether the absence of PM per se accumulates AGEs in vivo and causes behavioral dysfunctions. To address these points, we raised PM-deficient fruit flies, Drosophila melanogaster, with the sterilized defined medium. Flies reared in a PM-deficient medium accumulated AGEs and reduced lifespan, impaired gustatory response, sleep, courtship behavior, and olfactory learning. These results suggest that PM suppresses AGE accumulation in vivo and is required for regulating innate and empirical behaviors.


Subject(s)
Behavior, Animal , Drosophila melanogaster , Glycation End Products, Advanced , Longevity , Pyridoxamine , Animals , Glycation End Products, Advanced/metabolism , Pyridoxamine/pharmacology , Male , Sleep/physiology , Female , Sexual Behavior, Animal/physiology , Sexual Behavior, Animal/drug effects , Learning
20.
Elife ; 132024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856179

ABSTRACT

Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.


Vitamin B6 is an important nutrient for optimal brain function, with deficiencies linked to impaired memory, learning and mood in various mental disorders. In older people, vitamin B6 deficiency is also associated with declining memory and dementia. Although this has been known for years, the precise role of vitamin B6 in these disorders and whether supplements can be used to treat or prevent them remained unclear. This is partly because vitamin B6 is actually an umbrella term for a small number of very similar and interchangeable molecules. Only one of these is 'bioactive', meaning it has a biological role in cells. However, therapeutic strategies aimed at increasing only the bioactive form of vitamin B6 are lacking. Previous work showed that disrupting the gene for an enzyme called pyridoxal phosphatase, which breaks down vitamin B6, improves memory and learning in mice. To investigate whether these effects could be mimicked by drug-like compounds, Brenner, Zink, Witzinger et al. used several biochemical and structural biology approaches to search for molecules that bind to and inhibit pyridoxal phosphatase. The experiments showed that a molecule called 7,8-dihydroxyflavone ­ which was previously found to improve memory and learning in laboratory animals with brain disorders ­ binds to pyridoxal phosphatase and inhibits its activity. This led to increased bioactive vitamin B6 levels in mouse brain cells involved in memory and learning. The findings of Brenner et al. suggest that inhibiting pyridoxal phosphatase to increase vitamin B6 levels in the brain could be used together with supplements. The identification of 7,8-dihydroxyflavone as a promising candidate drug is a first step in the discovery of more efficient pyridoxal phosphatase inhibitors. These will be useful experimental tools to directly study whether increasing the levels of bioactive vitamin B6 in the brain may help those with mental health conditions associated with impaired memory, learning and mood.


Subject(s)
Enzyme Inhibitors , Phosphoric Monoester Hydrolases , Animals , Mice , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Hippocampus/metabolism , Hippocampus/drug effects , Neurons/drug effects , Neurons/metabolism , Pyridoxal Phosphate/metabolism , Flavones/pharmacology , Flavones/metabolism , Flavones/chemistry , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL