Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
J Math Biol ; 89(1): 7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772937

ABSTRACT

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Subject(s)
Epidemiological Models , Malaria, Vivax , Mosquito Vectors , Plasmodium vivax , Humans , Animals , Plasmodium vivax/growth & development , Plasmodium vivax/physiology , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Superinfection/immunology , Superinfection/parasitology , Liver/parasitology , Probability
2.
Malar J ; 23(1): 145, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741094

ABSTRACT

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Malaria, Vivax/drug therapy , Aminoquinolines/administration & dosage , Aminoquinolines/adverse effects , Aminoquinolines/therapeutic use , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Primaquine/administration & dosage , Primaquine/therapeutic use , Primaquine/adverse effects , Risk Assessment , Treatment Outcome , Drug Therapy, Combination , Plasmodium vivax/drug effects , Chloroquine/therapeutic use , Chloroquine/adverse effects , Chloroquine/administration & dosage
3.
Elife ; 132024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323802

ABSTRACT

A single 300 mg dose of tafenoquine, in combination with chloroquine, is currently approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥16 years. Recently, however, Watson et al. suggested that the approved dose of tafenoquine is insufficient for radical cure, and that a higher 450 mg dose could reduce P. vivax recurrences substantially (Watson et al., 2022). In this response, we challenge Watson et al.'s assertion based on empirical evidence from dose-ranging and pivotal studies (published) as well as real-world evidence from post-approval studies (ongoing, therefore currently unpublished). We assert that, collectively, these data confirm that the benefit-risk profile of a single 300 mg dose of tafenoquine, co-administered with chloroquine, for the radical cure of P. vivax malaria in patients who are not G6PD-deficient, continues to be favourable where chloroquine is indicated for P. vivax malaria. If real-world evidence of sub-optimal efficacy in certain regions is observed or dose-optimisation with other blood-stage therapies is required, then well-designed clinical studies assessing safety and efficacy will be required before higher doses are approved for clinical use.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Humans , Antimalarials/therapeutic use , Chloroquine/therapeutic use , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Meta-Analysis as Topic
4.
Elife ; 132024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323801

ABSTRACT

In our recent paper on the clinical pharmacology of tafenoquine (Watson et al., 2022), we used all available individual patient pharmacometric data from the tafenoquine pre-registration clinical efficacy trials to characterise the determinants of anti-relapse efficacy in tropical vivax malaria. We concluded that the currently recommended dose of tafenoquine (300 mg in adults, average dose of 5 mg/kg) is insufficient for cure in all adults, and a 50% increase to 450 mg (7.5 mg/kg) would halve the risk of vivax recurrence by four months. We recommended that clinical trials of higher doses should be carried out to assess their safety and tolerability. Sharma and colleagues at the pharmaceutical company GSK defend the currently recommended adult dose of 300 mg as the optimum balance between radical curative efficacy and haemolytic toxicity (Sharma et al., 2024). We contend that the relative haemolytic risks of the 300 mg and 450 mg doses have not been sufficiently well characterised to justify this opinion. In contrast, we provided evidence that the currently recommended 300 mg dose results in sub-maximal efficacy, and that prospective clinical trials of higher doses are warranted to assess their risks and benefits.


Subject(s)
Aminoquinolines , Antimalarials , Malaria, Vivax , Adult , Humans , Antimalarials/therapeutic use , Hemolysis , Malaria, Vivax/drug therapy , Primaquine/therapeutic use , Prospective Studies , Meta-Analysis as Topic
5.
Trials ; 25(1): 154, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424577

ABSTRACT

BACKGROUND: Plasmodium vivax remains a major challenge for malaria control and elimination due to its ability to cause relapsing illness. To prevent relapses the Indian National Center for Vector Borne Diseases Control (NCVBDC) recommends treatment with primaquine at a dose of 0.25 mg/kg/day provided over 14 days. Shorter treatment courses may improve adherence and treatment effectiveness. METHODS: This is a hospital-based, randomised, controlled, open-label trial in two centres in India. Patients above the age of 16 years, with uncomplicated vivax malaria, G6PD activity of ≥ 30% of the adjusted male median (AMM) and haemoglobin levels ≥ 8 g/dL will be recruited into the study and randomised in a 1:1 ratio to receive standard schizonticidal treatment plus 7-day primaquine at 0.50 mg/kg/day or standard care with schizonticidal treatment plus 14-day primaquine at 0.25 mg/kg/day. Patients will be followed up for 6 months. The primary endpoint is the incidence risk of any P. vivax parasitaemia at 6 months. Safety outcomes include the incidence risk of severe anaemia (haemoglobin < 8 g/dL), the risk of blood transfusion, a > 25% fall in haemoglobin and an acute drop in haemoglobin of > 5 g/dL during primaquine treatment. DISCUSSION: This study will evaluate the efficacy and safety of a 7-day primaquine regimen compared to the standard 14-day regimen in India. Results from this trial are likely to directly inform national treatment guidelines. TRIAL REGISTRATION: Trial is registered on CTRI portal, Registration No: CTRI/2022/12/048283.


Subject(s)
Antimalarials , Malaria, Vivax , Adolescent , Adult , Humans , Male , Antimalarials/adverse effects , Antimalarials/therapeutic use , Hemoglobins , India , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Primaquine/adverse effects , Primaquine/therapeutic use , Recurrence , Multicenter Studies as Topic , Randomized Controlled Trials as Topic
6.
Parasit Vectors ; 17(1): 28, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254128

ABSTRACT

BACKGROUND: Plasmodium vivax malaria, with the widest geographic distribution, can cause severe disease and death. Primaquine is the main licensed antimalarial drug that can kill hypnozoites. The dose-dependent acute haemolysis in individuals with glucose-6-phospate dehydrogenase (G6PD) deficiency is the main safety concern when using primaquine. The recommended treatment regimen for P. vivax malaria is chloroquine plus primaquine for 14 days (CQPQ14) in Myanmar. The study aimed to evaluate the therapeutic efficacy, safety and adherence for the regimen of artemisinin-naphthoquine plus primaquine for 3 days (ANPQ3) in patients with P. vivax infections compared to those with CQPQ14. METHODS: The patients in the ANPQ3 group were given fixed-dose artemisinin-naphthoquine (a total 24.5 mg/kg bodyweight) plus a lower total primaquine dose (0.9 mg/kg bodyweight) for 3 days. The patients in the CQPQ14 group were given a total chloroquine dose of 30 mg/kg body weight for 3 days plus a total primaquine dose of 4.2 mg/kg bodyweight for 14 days. All patients were followed up for 365 days. RESULTS: A total of 288 patients completed follow-up, 172 in the ANPQ3 group and 116 in the CQPQ14 group. The first recurrence patients were detected by day 58 in both groups. By day 182, 16 recurrences had been recorded: 12 (7.0%) patients in the ANPQ3 group and 4 (3.4%) in the CQPQ14 group. The difference in recurrence-free patients was 3.5 (-8.6 to 1.5) percentage points between ANPQ3 and CQPQ14 group (P = 0.2946). By day 365, the percentage of recurrence-free patients was not significant between the two groups (P = 0.2257). Mean fever and parasite clearance time of ANPQ3 group were shorter than those in CQPQ14 group (P ≤ 0.001). No severe adverse effect was observed in ANPQ3 group, but five (3.9%) patients had acute haemolysis in CQPQ14 group (P = 0.013). Medication percentage of ANPQ3 group was significantly higher than that of CQPQ14 group (P < 0.0001). CONCLUSIONS: Both ANPQ3 and CQPQ14 promised clinical cure efficacy, and the radical cure efficacy was similar between the ANPQ3 and CQPQ14 group. ANPQ3 clears fever and parasites faster than CQPQ14. ANPQ3 is safer and shows better patient adherence to the regimen for treatment of P. vivax malaria along the China-Myanmar border. TRIAL REGISTRATION: ChiCTR-INR-17012523. Registered 31 August 2017, https://www.chictr.org.cn/showproj.html?proj=21352.


Subject(s)
1-Naphthylamine/analogs & derivatives , Aminoquinolines , Artemisinins , Malaria, Vivax , Humans , Primaquine/adverse effects , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Hemolysis , Artemisinins/adverse effects , Chloroquine/adverse effects , Fever
7.
Cureus ; 15(11): e48546, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38073990

ABSTRACT

Plasmodium vivax malaria is known for its recurring febrile episodes, typically considered less severe than its counterparts. This case study presents a distinctive case of a 22-year-old male from a malaria-endemic region, experiencing spleen rupture and infarction as rare complications of vivax malaria. We explore the uncommon aspects of this case, emphasizing the importance of early diagnosis and tailored management.

8.
Trop Med Infect Dis ; 8(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37888591

ABSTRACT

The Duffy protein, a transmembrane molecule, functions as a receptor for various chemokines and facilitates attachment between the reticulocyte and the Plasmodium Duffy antigen-binding protein. Duffy expression correlates with the Duffy receptor gene for the chemokine, located on chromosome 1, and exhibits geographical variability worldwide. Traditionally, researchers have described the Duffy negative genotype as a protective factor against Plasmodium vivax infection. However, recent studies suggest that this microorganism's evolution could potentially diminish this protective effect. Nevertheless, there is currently insufficient global data to demonstrate this phenomenon. This study aimed to evaluate the relationship between the Duffy genotype/phenotype and the prevalence of P. vivax infection. The protocol for the systematic review was registered in PROSPERO as CRD42022353427 and involved reviewing published studies from 2012 to 2022. The Medline/PubMed, Web of Science, Scopus, and SciELO databases were consulted. Assessments of study quality were conducted using the STROBE and GRADE tools. A total of 34 studies were included, with Africa accounting for the majority of recorded studies. The results varied significantly regarding the relationship between the Duffy genotype/phenotype and P. vivax invasion. Some studies predominantly featured the negative Duffy genotype yet reported no malaria cases. Other studies identified minor percentages of infections. Conversely, certain studies observed a higher prevalence (99%) of Duffy-negative individuals infected with P. vivax. In conclusion, this systematic review found that the homozygous Duffy genotype positive for the A allele (FY*A/*A) is associated with a higher incidence of P. vivax infection. Furthermore, the negative Duffy genotype does not confer protection against vivax malaria.

9.
Cureus ; 15(6): e40042, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37425547

ABSTRACT

Malaria has various causative agents that can have a spectrum of disease manifestations, some potentially fatal. Various species have been established as etiologies of malaria, though our understanding of the severity of various species is changing. We present a unique case of Plasmodium vivax malaria that resulted in severe disease, a magnitude rarely seen in previous literature. Our patient was a 35-year-old healthy woman who presented to the emergency department with abdominal pain, nausea, vomiting, and fever. Further workup revealed severe thrombocytopenia with prolonged prothrombin (PT) and partial thromboplastin time (PTT). An initial thick smear failed to detect any Plasmodium species, but a thin smear revealed P. vivax. The patient's hospital stay was complicated by septic shock requiring intensive care unit (ICU) admission. This unique case represents P. vivax as the causative agent of severe malaria even in healthy, immunocompetent patients.

10.
Int J Infect Dis ; 134: 114-122, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269941

ABSTRACT

OBJECTIVES: To assess the pharmacokinetics, safety, and tolerability of two high-dose, short-course primaquine (PQ) regimens compared with standard care in children with Plasmodium vivax infections. METHODS: We performed an open-label pediatric dose-escalation study in Madang, Papua New Guinea (Clinicaltrials.gov NCT02364583). Children aged 5-10 years with confirmed blood-stage vivax malaria and normal glucose-6-phosphate dehydrogenase activity were allocated to one of three PQ treatment regimens in a stepwise design (group A: 0.5 mg/kg once daily for 14 days, group B: 1 mg/kg once daily for 7 days, and group C: 1 mg/kg twice daily for 3.5-days). The study assessments were completed at each treatment time point and fortnightly for 2 months after PQ administration. RESULTS: Between August 2013 and May 2018, 707 children were screened and 73 met the eligibility criteria (15, 40, and 16 allocated to groups A, B, and C, respectively). All children completed the study procedures. The three regimens were safe and generally well tolerated. The pharmacokinetic analysis indicated that an additional weight adjustment of the conventionally recommended milligram per kilogram PQ doses is not necessary to ensure the therapeutic plasma concentrations in pediatric patients. CONCLUSIONS: A novel, ultra-short 3.5-day PQ regimen has potential benefits for improving the treatment outcomes in children with vivax malaria that warrants further investigation in a large-scale clinical trial.


Subject(s)
Antimalarials , Malaria, Vivax , Humans , Child , Primaquine/adverse effects , Malaria, Vivax/drug therapy , Antimalarials/adverse effects , Treatment Outcome , Liver , Plasmodium vivax
11.
Malar J ; 22(1): 181, 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37303047

ABSTRACT

BACKGROUND: Chloroquine (CQ) has been the preferred clinical treatment for vivax malaria in Yunnan Province since 1958, with over 300,000 patients. This study aimed to help make trend predictions regarding variations the in anti-malarial drug susceptibility of Plasmodium vivax distributed in Yunnan Province and effectively implement monitoring measures on the efficacy of anti-malarial drugs for vivax malaria. METHODS: Blood samples collected from patients with mono-P. vivax infections were employed in this study based on the principle of cluster sampling. The whole gene of P. vivax multidrug resistance 1 protein gene (pvmdr1) was amplified by nested-PCR techniques and the PCR amplification produce were sequenced by Sanger bidirectional sequencing. The mutant loci and haplotypes of coding DNA sequence (CDS) were identified by comparison with the reference sequence (NC_009915.1) of the P. vivax Sal I isolate. Parameters such as Ka/Ks ratio were calculated using MEGA 5.04 software. RESULTS: A total of 753 blood samples from patients infected with mono-P. vivax were collected, of which 624 blood samples yielded the full gene sequence (4392 bp) of the pvmdr1 gene, with 283, 140, 119, and 82 sequences from 2014, 2020, 2021 and 2022, respectively. A total of 52 single nucleotide polymorphic (SNP) loci were detected for the 624 CDSs, of which 92.3% (48/52), 34.6% (18/52), 42.3% (22/52), and 36.5% (19/52) SNPs were detected in 2014, 2020, 2021 and 2022, respectively. All of 624 CDSs were defined for a total of 105 mutant haplotypes, with CDSs of 2014, 2020, 2021, and 2022 containing 88, 15, 21, and 13 haplotypes, respectively. Of the 105 haplotypes, the threefold mutant haplotype (Hap_87) was the starting point for stepwise evolution, and the most drastic tenfold mutations were Hap_14 and Hap_78, and the fivefold, sixfold, sevenfold, and eightfold mutations. CONCLUSIONS: In the majority of vivax malaria cases in Yunnan Province, most of them were infected with strains carrying demonstrating highly mutated in pvmdr1 genes. However, the dominant mutation strains types varied from year to year, which warrants further exploration in order to confirm the correlation between with phenotypic changes in P. vivax strains and their susceptibility to anti-malarial drugs such as chloroquine.


Subject(s)
Antimalarials , Chloroquine , Drug Resistance , Malaria, Vivax , Plasmodium vivax , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult , Antimalarials/pharmacology , China , Chloroquine/pharmacology , Drug Resistance/genetics , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Plasmodium vivax/drug effects , Plasmodium vivax/genetics , Genetic Markers
12.
Lancet Reg Health Southeast Asia ; 9: 100128, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37383038

ABSTRACT

In Cambodia, malaria cases are on a trajectory towards the goal of malaria elimination by 2025. Vivax malaria is difficult to eliminate because of hypnozoites that can cause relapse. Primaquine, an 8-aminoquinoline, clears hypnozoites but requires testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency. Routine primaquine treatment of vivax malaria has recently been implemented in Cambodia in which Village Malaria Workers (VMWs) diagnose vivax malaria by rapid diagnostic test and refer patients to health centres for G6PD testing and further treatment. Patients are referred back to the VMWs for monitoring adverse symptoms and treatment adherence. This article explores how VMWs' roles might be optimized for the community-based management of vivax malaria. With sufficient training and supervision, the role of VMWs might be expanded to include G6PD testing, making referral to the health centre superfluous. Community-based management of vivax malaria could increase the coverage of radical cure and accelerate vivax malaria elimination.

13.
Pathogens ; 12(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37242359

ABSTRACT

Plasmodium vivax cases represent more than 50% of a diminishing malaria case load in Vietnam. Safe and effective radical cure strategies could support malaria elimination by 2030. This study investigated the operational feasibility of introducing point-of-care quantitative glucose-6-phosphate dehydrogenase (G6PD) testing into malaria case management practices. A prospective interventional study was conducted at nine district hospitals and commune health stations in Binh Phuoc and Gia Lai provinces in Vietnam over the period of October 2020 to October 2021. The STANDARD™ G6PD Test (SD Biosensor, Seoul, Republic of Korea) was incorporated to inform P. vivax case management. Case management data and patient and health care provider (HCP) perspectives, as well as detailed cost data were collected. The G6PD test results were interpreted correctly by HCP and the treatment algorithm was adhered to for the majority of patients. One HCP consistently ran the test incorrectly, which was identified during the monitoring and resulted in provision of refresher training and updating of training materials and patient retesting. There was wide acceptability of the intervention among patients and HCP albeit with opportunities to improve the counseling materials. Increasing the number of facilities to which the test was deployed and decreases in the malaria cases resulted in higher per patient cost for incorporating G6PD testing into the system. Commodity costs can be reduced by using the 10-unit kits compared to the 25 unit kits, particularly when the case loads are low. These results demonstrate intervention feasibility while also highlighting specific challenges for a country approaching malaria elimination.

14.
Access Microbiol ; 5(4)2023.
Article in English | MEDLINE | ID: mdl-37223061

ABSTRACT

Plasmodium vivax, one of the major species associated with human malaria, continues to be a major public health problem in many parts of the world. Numerous studies related to vivax malaria have described quantitative haematological findings (level of haemoglobin, thrombocytopaenia, haematocrit values), but diverse morphological changes of parasite forms within infected red blood cells (iRBCs) have been mentioned only in few studies. Here we report a case of a 13-year-old boy who presented with fever, significant low platelet counts and hypovolaemia that created a diagnostic dilemma. Detection of microgametocytes by microscopic examinations, further confirmed by multiplex nested PCR assays and response to anti-malarials, helped to make the diagnosis. We present an atypical case of vivax malaria with a review of morpho-variations of iRBCs and have summarized the characteristics that aid in creating increased awareness among laboratory health professionals and public health workers.

15.
Pathogens ; 12(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986323

ABSTRACT

Vivax malaria can relapse after an initial infection due to dormant liver stages of the parasite. Radical cure can prevent relapses but requires the measurement of glucose-6-phosphate dehydrogenase enzyme (G6PD) activity to identify G6PD-deficient patients at risk of drug-induced haemolysis. In the absence of reliable G6PD testing, vivax patients are denied radical curative treatment in many places, including rural Cambodia. A novel Biosensor, 'G6PD Standard' (SD Biosensor, Republic of Korea; Biosensor), can measure G6PD activity at the point of care. The objectives of this study were to compare the G6PD activity readings using Biosensors by village malaria workers (VMWs) and hospital-based laboratory technicians (LTs), and to compare the G6PD deficiency categorization recommended by the Biosensor manufacturer with categories derived from a locally estimated adjusted male median (AMM) in Kravanh district, Cambodia. Participants were enrolled between 2021 and 2022 in western Cambodia. Each of the 28 VMWs and 5 LTs received a Biosensor and standardized training on its use. The G6PD activities of febrile patients identified in the community were measured by VMWs; in a subset, a second reading was done by LTs. All participants were tested for malaria by rapid diagnostic test (RDT). The adjusted male median (AMM) was calculated from all RDT-negative participants and defined as 100% G6PD activity. VMWs measured activities in 1344 participants. Of that total, 1327 (98.7%) readings were included in the analysis, and 68 of these had a positive RDT result. We calculated 100% activity as 6.4 U/gHb (interquartile range: 4.5 to 7.8); 9.9% (124/1259) of RDT-negative participants had G6PD activities below 30%, 15.2% (191/1259) had activities between 30% and 70%, and 75.0% (944/1259) had activities greater than 70%. Repeat measurements among 114 participants showed a significant correlation of G6PD readings (rs = 0.784, p < 0.001) between VMWs and LTs. Based on the manufacturer's recommendations, 285 participants (21.5%) had less than 30% activity; however, based on the AMM, 132 participants (10.0%) had less than 30% activity. The G6PD measurements by VMWs and LTs were similar. With the provisions of training, supervision, and monitoring, VMWs could play an important role in the management of vivax malaria, which is critical for the rapid elimination of malaria regionally. Definitions of deficiency based on the manufacturer's recommendations and the population-specific AMM differed significantly, which may warrant revision of these recommendations.

16.
Br J Clin Pharmacol ; 89(3): 1187-1197, 2023 03.
Article in English | MEDLINE | ID: mdl-36199201

ABSTRACT

AIM: Microsampling has the advantage of smaller blood sampling volume and suitability in vulnerable populations compared to venous sampling in clinical pharmacokinetics studies. Current regulatory guidance requires correlative studies to enable microsampling as a technique. A post hoc population pharmacokinetic (POPPK) approach was utilized to investigate blood capillary microsampling as an alternative to venous sampling. METHODS: Pharmacokinetic data from microsampling and venous sampling techniques during a paediatric study evaluating tafenoquine, a single-dose antimalarial for P. vivax, were used. Separate POPPK models were developed and validated based on goodness of fit and visual predictive checks, with pharmacokinetic data obtained via each sampling technique. RESULTS: Each POPPK model adequately described tafenoquine pharmacokinetics using a two-compartment model with body weight based on allometric scaling of clearance and volume of distribution. Tafenoquine pharmacokinetic parameter estimates including clearance (3.4 vs 3.7 L/h) were comparable across models with slightly higher interindividual variability (38.3% vs 27%) in capillary microsampling-based data. A bioavailability/bioequivalence comparison demonstrated that the point estimate (90% CI) of capillary microsample versus venous sample model-based individual post hoc estimates for area under the concentration-time curve from time zero to infinity (AUC0-inf ) (100.7%, 98.0-103.5%) and Cmax (79.7%, 76.9-82.5%) met the 80-125% and 70-143% criteria, respectively. Overall, both POPPK models led to the same dose regimen recommendations across weight bins based on achieving target AUC. CONCLUSIONS: This analysis demonstrated that a POPPK approach can be employed to assess the performance of alternative pharmacokinetic sampling techniques. This approach provides a robust solution in scenarios where variability in pharmacokinetic data collected via venous sampling and microsampling may not result in a strong linear relationship. The findings also established that microsampling techniques may replace conventional venous sampling methods.


Subject(s)
Antimalarials , Humans , Child , Feasibility Studies , Antimalarials/pharmacokinetics , Aminoquinolines/pharmacokinetics , Biological Availability
17.
Front Public Health ; 10: 1010172, 2022.
Article in English | MEDLINE | ID: mdl-36339224

ABSTRACT

Primaquine, the only licensed antimalarial drug for eradication of Plasmodium vivax and Plasmodium ovale malaria, may cause acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd) during treatment. The different prevalence and distribution patterns of G6PDd in Hainan, the ancient malaria-endemic area, are unclear. This study included 5,622 suspected malaria patients between 2009 and 2011 in 11 counties of Hainan. Glucose-6-phosphate dehydrogenase deficiency prevalence was determined using the fluorescent spot test (FST) and malaria patients was confirmed by a positive light microscopy. The G6PDd prevalence for different ethnic groups, genders, and counties were calculated and compared using χ2-test. Spatial cluster and Spearman rank correlation of G6PDd prevalence and malaria incidence were analyzed. The overall G6PDd prevalence of study population was 7.45%. The G6PDd prevalence of males, Li ethnic minority, and malaria patients was significantly higher than that of females, Han ethnic majority, and non-malarial patients (p < 0.01), respectively. The spatial cluster of G6PDd and malaria located in south-western and central-southern Hainan, respectively, with no significant correlation. The study provides essential information on G6PDd prevalence in ancient malaria-endemic areas of Hainan Province. We also highlight the need for a better understanding of the mechanisms underlying the relationship between G6PDd prevalence and malaria incidence. These findings provide a reference for the safety of the primaquine-based intervention, even after malaria elimination.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Malaria , Humans , Female , Male , Primaquine/adverse effects , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Prevalence , Ethnicity , Minority Groups , Malaria/drug therapy , Malaria/epidemiology , China/epidemiology
18.
Trop Med Health ; 50(1): 76, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36221147

ABSTRACT

BACKGROUND: Although platelet indices are routinely available using automated blood cell counters, the clinical applications of these parameters for malaria and dengue hemorrhagic fever (DHF) have not been substantially implemented. We conducted this study to investigate the potential role of platelet indices as a prognostic marker in adult patients with Plasmodium vivax malaria, Plasmodium falciparum malaria, and DHF admitted to the Hospital for Tropical Diseases, Bangkok, Thailand. METHODS: We enrolled 219 eligible patients, comprising 96 with P. falciparum malaria, 71 with P. vivax malaria, and 52 with DHF. We evaluated the study groups' baseline clinical features and alterations of platelet indices during the first 4 days of admission. RESULTS: Upon admission, the initial laboratory findings showed no statistically significant difference in platelet count (PC), plateletcrit (PCT), or platelet distribution width (PDW) between patients with P. vivax and P. falciparum; however, mean platelet volume (MPV) was significantly higher in patients with P. falciparum. Comparisons of the initial platelet indices in malaria and DHF showed that only PC and PCT were significantly lower in DHF. Although MPV in DHF tended to be lower than in malaria, a statistically significant difference was observed only with P. falciparum. Moreover, the results also showed no significant alterations in the platelet indices among the study groups during the first 4 days of admission. CONCLUSIONS AND RECOMMENDATIONS: Clinical presentations of DHF and malaria are nonspecific and may overlap with other common tropical diseases. Alterations of initial platelet indices may be investigated in P. vivax and P. falciparum malaria mimicking DHF. Although a significant reduction in PC and PCT in DHF might be a clue for differential diagnosis of malaria, the use of MPV and PDW might be impractical. We suggest that appropriate laboratory diagnoses for malaria and dengue infections are still needed for the differential diagnosis of acute febrile patients who have a risk of malaria or dengue infections. To clarify the clinical utility of platelet indices in patients with dengue and malaria, further studies are required that particularly include patients with different severities, geographical areas, and levels of health care settings.

19.
Malar J ; 21(1): 282, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36195916

ABSTRACT

BACKGROUND: Quantitative measurement of Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme activity is critical to decide on appropriate treatment and provision of radical cure regimens for vivax malaria. Biosensors are point-of-care semi-quantitative analysers that measure G6PD enzyme activity. The main objective of this study was to evaluate the operational aspects of biosensor deployment in the hands of village malaria workers (VMWs) in Cambodia over a year. METHODS: Following initial orientation and training at Kravanh Referral Hospital, each VMW (n = 28) and laboratory technician (n = 5) was provided a biosensor (STANDARD SD Biosensor, Republic of Korea) with supplies for routine use. Over the next 12 months VMWs convened every month for refresher training, to collect supplies, and to recalibrate and test their biosensors. A quantitative self-administered questionnaire was used to assess the skills necessary to use the biosensor after the initial training. Subsequently, VMWs were visited at their location of work for field observation and evaluation using an observer-administered questionnaire. All quantitative questionnaire-based data were analysed descriptively. Semi-structured interviews (SSIs) were conducted among all participants to explore their experience and practicalities of using the biosensor in the field. SSIs were transcribed and translated into English and underwent thematic analysis. RESULTS: A total of 33 participants completed the training and subsequently used the biosensor in the community. Quantitative assessments demonstrated progressive improvement in skills using the biosensor. VMWs expressed confidence and enthusiasm to use biosensors in their routine work. Providing G6PD testing at the point of first contact avoids a multitude of barriers patients have to overcome when travelling to health centres for G6PD testing and radical cure. Deploying biosensors in routine work of VMWs was also considered an opportunity to expand and strengthen the role of VMWs as health care providers in the community. VMWs reported practical concerns related to the use of biosensor such as difficulty in using two pipettes, difficulty in extracting the code chip from the machine, and the narrow base of buffer tube. CONCLUSIONS: VMWs considered the biosensor a practical and beneficial tool in their routine work. Providing VMWs with biosensors can be considered when followed by appropriate training and regular supervision. Providing community management of vivax malaria at the point of first contact could be key for elimination.


Subject(s)
Antimalarials , Biosensing Techniques , Glucosephosphate Dehydrogenase Deficiency , Malaria, Vivax , Malaria , Antimalarials/therapeutic use , Cambodia , Glucosephosphate Dehydrogenase , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Humans , Malaria/diagnosis , Malaria/drug therapy , Malaria, Vivax/diagnosis , Malaria, Vivax/drug therapy , Primaquine/therapeutic use
20.
BMC Ophthalmol ; 22(1): 389, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36183076

ABSTRACT

BACKGROUND: Mucormycosis is a potentially lethal, angioinvasive fungal infection caused by the Mucoracea family comprising Mucor, Rhizopus, and Absidia species. It is commonly associated with uncontrolled diabetes mellitus, the use of corticosteroids, immunosuppressive drugs, and Covid-19 infection. The occurrence of mucormycosis in an immunocompetent patient is rare. Also, only a few case reports have been published where patients developed mucormycosis with associated malarial infection. CASE PRESENTATION: A young female presented with a 3-weeks history of painful swelling and outward protrusion of the right eye with complete loss of vision. She had a history of P.vivax malaria two weeks before her ocular symptoms. On ocular examination, there was proptosis and total ophthalmoplegia with loss of corneal sensations in the right eye. Hematological examination revealed normocytic normochromic anemia and thrombocytopenia. MRI was suggestive of right-sided pansinusitis and orbital cellulitis with right superior ophthalmic vein thrombosis and bulky cavernous sinus. Nasal biopsy was negative for fungal culture. An emergency surgical debridement of all the sinuses was done with right orbital exenteration. Histopathology confirmed the diagnosis of mucormycosis and the patient improved post-operatively on systemic antifungals. CONCLUSION: Such an association of mucormycosis with malaria infection is rarely reported in the literature and is hypothesized to be a result of immunosuppression caused by malaria. Also, emphasis is laid upon having a high index of suspicion for fungal infection in the setting of pansinusitis even if the risk factors are absent. We hereby report a case of rhino-orbital mucormycosis following P.vivax malaria in a 20-year-old female with anemia and thrombocytopenia.


Subject(s)
COVID-19 , Eye Infections, Fungal , Malaria, Vivax , Mucormycosis , Orbital Cellulitis , Orbital Diseases , Thrombocytopenia , Adult , Antifungal Agents/therapeutic use , COVID-19/complications , Eye Infections, Fungal/complications , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/drug therapy , Female , Humans , Malaria, Vivax/complications , Malaria, Vivax/drug therapy , Mucormycosis/complications , Mucormycosis/diagnosis , Mucormycosis/microbiology , Orbital Diseases/complications , Orbital Diseases/diagnosis , Thrombocytopenia/complications , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...